A paper version of the # http://www.jpl.nasa.gov/basics interactive online tutorial May 2001 Jet Propulsion Laboratory California Institute of Technology JPL D-20120 TMOD 890-289 # Notes and disclaimers on this paper version: This is a printout of an Adobe Acrobat (.pdf) file that was created from an interactive website tutorial. As such, it is missing many of the online interactive features intended to help the reader understand and retain the information. Also, as a printed document, it contains many anomalies. Examples are - Inappropriate page breaks. - Blank areas where the HTML to .pdf translation was less than optimum. - No continuous page numbers in the document. - A repeat of the online navigation tools (chapter headings, etc.) at the end of each section. - Hyperlinked picture captions and notes inserted between continuous text pages. - Pages inserted from other web sites (e.g., spacecraft descriptions). Despite these oddities, demand has been high for a printable version of the tutorial, so here it is. THE FEBRUARY 2001 UPDATE **EDITORIAL** #### **SECTION I** - **ENVIRONMENT** - 1 The Solar System - 2 Reference Systems - **3** Gravity & Mechanics - **4** Trajectories - 5 Planetary Orbits - **6** Electromagnetics #### **SECTION II** - **FLIGHT PROJECTS** - 7 Mission Inception - **8** Experiments - 9 S/C Classification - 10 Telecom - 11 Onboard Systems - 12 Science Instruments - 13 Navigation #### **SECTION III** **OPERATIONS** - 14 Launch - 15 Cruise - 16 Encounter - 17 Extended Ops - 18 Deep Space Network # How do you get to another planet? - Can gravity assist you? - What is Universal Time? The people of Caltech's Jet Propulsion Laboratory (JPL) create and manage NASA projects of exploration throughout our solar system and beyond. This is a training module designed primarily to help JPL operations people identify the range of concepts associated with deep space missions and grasp the relationships these concepts exhibit for space flight. It also enjoys growing popularity among high school and college students, as well as faculty and people everywhere who are interested in interplanetary space flight. The Basics of Space Flight attempts to offer a broad scope, but limited depth, as a background for further investigation; many other resources are available, of course, for delving into each of the topics related here. Indeed, any one of these topics can involve a lifelong career of specialization. This module's purpose is met if the participant learns the scope of concepts that apply to interplanetary space exploration and the relationships between them. This module is intended to be used online via the worldwide web (http://www.jpl.nasa.gov/basics). There are interactive quizzes to let you check your own progress. No academic credit is offered for completing the module. Interplanetary adventure begins . . . HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS Thanks to The Planetary Report, published by <u>The Planetary Society</u>, for kind permission to use this painting by David Hardy. SITE LAST MODIFIED 3 MAY 2001 This document was first prepared in 1993 by <u>Dave Doody</u> and George Stephan of the Mission Operations Section (391 as it was named back then) in association with the Section's Training Working Group. The 2001 update is by Dave Doody with <u>Diane</u> Fisher's editorial and technical expertise. From 1995 through 1997, The Planetary Society published Dave Doody's regular column, "Basics of Space Flight" which drew and embellished on the original version of this document. Some of those articles still appear in the "publications" section on The Planetary Society's website. Aspects of this material have been incorporated in the 2001 update. If you have a question about any of the content in this document, you may send email to Dave Doody (use the above link). Dave is currently Flight Operations Lead for the Cassini Mission Support and Services Office. Web document administered by **Diane Fisher** # Notes on the February 2001 Update Much of the text from the original 1993 Basics of Space Flight online version has been retained but augmented and edited to improve clarity and simplicity, with the intention of keeping focused on "what's the point here?" Additional material has been added to reflect the current and planned sets of interplanetary missions, as well as some Earth-orbiting missions. The graphics have been updated and reworked to enhance clarity, and some have animations available to download and run in the form of animated .gif files. The world-wide-web was in its infancy when Diane Fisher first took the initiative to put The Basics of Space Flight out there. Today the web is well populated with resources. Just about everyone, from people who create scientific instruments flying on spacecraft, to launch vehicle manufacturers, have their own website. This update is highly connected to take advantage of some very good external sites. Good links, and the document's animated diagrams, make it much more informative as a web document than it was in paper. Of course, all those links pose a problem: they are subject to breakage. We've tried to select links less likely to break, but break they will. Please let us know when you find a broken link. Other minor corrections, changes and additions will be made to the document on an irregular basis. Efforts have been made to retain hyperlink anchor name points from the original 1993 online version to avoid breaking links from external websites, however it may not have been possible to avoid breaking some. One drawback to having preserved incoming links is that there is now a wide variation among the lengths of pages, and in the number of pages per chapter. We do realize the Latin "data" is the plural of "datum," one single point of data. In this version, though, we treat the word "data" collectively, like one would treat "sugar." There are lots of little bits. This approach releases us from having to wield awkward sentences to treat it as plural. In this document, data is a substance. It flows through pipelines and processors. # Acknowledgements The 2001 update was undertaken by Dave Doody and Diane Fisher, working under the auspices of the JPL Mission Execution & Automation Section (368). Diane created most of the animated images, and performed technical editing of the entire document. Thanks to Susan Reichley and Mary Beth Murrill of Media Relations for their reviews and advice. Thanks to Susan Kurtik for funding, to Ben Toyoshima for guidance, to Gerardo Rivera and Robert Antonio for the quiz scoring engine, and to Eric Tauer for web technical advice and for delivering the nice animation handling script in a timely manner. Thanks to Bill Kurth for help with information about the heliosphere, Jeremy Jones for reviewing navigation issues, Steve Edberg for help with things astronomical, Laura Sakamoto for expertise with telecommunications and DSN topics, to Betsy Wilson for lots of help with the telemetry section, and to Trina Ray for reviewing Radio Science and DSN stuff. Thanks to Greg Chin, manager of the Cassini Mission Support & Services Office, who granted the author freedom to work on this update during a busy Jupiter flyby period for the Cassini Mission to Saturn. For the original 1993 version, Diane Fisher provided technical editing and illustration, and took the initiative to publish it on the web. Cozette Parker assisted with the initial hardcopy publication. Special thanks to the original reviewers Ben Toyoshima, Larry Palkovic, Carol Scott, Rob Smith, Dan Lyons, and Bob Molloy, and to field testers Kathy Golden, Steve Annan, Linda Lee, and Paul Porter for their valuable comments. Thanks to Roy Bishop (Physics Department, Acadia University, and the Royal Astronomical Society of Canada) for his independent review. # **Image Credits** Clicking on an image in the document will bring up a page citing credits if any are appropriate. Some images link directly to a related website. #### Honors and Kudos Received <u>Here's a list</u> of awards and commendations received, along with the story about how the document got started, and how it became popular. #### **PDF Version** The 2001 update has concentrated on use of the web as the primary medium for users to access the Basics of Space Flight. Users will benefit most from the web version with its extensive links and animations. If you would like to print a paper copy or would like to download the entire tutorial to study at your leisure without being connected to the internet, we have also prepared a .pdf (portable document format) file, which you can view or print using the free <u>Adobe</u> Acrobat Reader. A few notes and disclaimers about the .pdf file: It has been generated from this web site. Page breaks are not controlled in this process, so they may appear in strange places, such as immediately following a heading. However, the links for navigation within the document have been retained. In some cases, external links to other web sites have been also retained. When you put the mouse over an external link, the cursor turns to a pointing finger with a tiny "W" (for Web) on it. Be aware that if you click on it and are not connected to the web, you won't go anywhere! Of course, the animated graphics, interactive quizzes, and search engine do not work in the .pdf file. Answers to all quizzes are at the very end of the .pdf file. Also, if you print out this 340-page document, be aware that it will not have page numbers! **Click this icon** to download the 6-MegaByte *Basics of Space Flight* pdf file. It may take a long time to download unless you have a high-speed Internet connection. The Basics of Space Flight document numbers, title, author and date, are as follows: JPL D-20120 Basics of Space Flight Dave Doody February 2001 View NASA's Privacy Statement for Web Sites HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS | SECTION I | |------------------| | ENIMIDONIM | **ENVIRONMENT** 1
The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories <u>5 Planetary Orbits</u> 6 Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 <u>Mission Inception</u> **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation #### **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network # **Principal Author** Dave Doody has been interested in interplanetary space flight since at least age 6 when his father built a 16-foot tall rocket ship in the back yard for him and his neighborhood friends to "fly" among the planets. He started working with JPL's Deep Space Network in 1982, and came to work at JPL with the Voyager mission in 1985. After serving as a member of the Magellan flight team on its Venus-mapping mission, Dave joined Cassini, and is currently Operations Lead for the Cassini Mission Support and Services Office. He gives public talks several times a year. Eager to share the excitement of interplanetary exploration, Dave has provided educational, free downloadable paper scale models of the <u>Cassini</u> spacecraft, the <u>Galileo</u> spacecraft, the <u>Stardust</u> spacecraft, and others. They're appropriate for people generally age 12 through adult, although younger people might try them if they have enough motivation and interest. A few times a year you'll find Dave playing "sidewalk astronomer" in Old Town Pasadena, offering free views of Jupiter and Saturn through the JPL Astronomy Club's massive Tinsley Cassegrain telescope. dave.doody@jpl.nasa.gov. THE BASICS OF SPACE FLIGHT # Technical editor and graphic artist A life-long generalist and professional dabbler, Diane Fisher has been a space program groupie since the Apollo Program. Working at Kennedy Space Center in McDonnell-Douglas' Project Engineering Office, she supported the testing and preparation of the S-IVB stage of the Saturn V launch vehicles for Apollos 15, 16, 17 and Skylabs I and II. She witnessed six Saturn V launches while standing on the ground in front of the 400+-foot-tall high-bay doors of KSC's Vehicle Assembly Building (3 miles from the pad), so the rest of her career has been rather quiet by comparison. In her 18 years at JPL, she has written user and other support documentation for ground-based telemetry and command operations applications; has designed and developed (including researching and writing content) many JPL-internal and public web sites. She authored The Basics of Radio Astronomy Workbook, launching her switch from software documentation into science and technology writing and web site design for public outreach. She is the designer, content developer, and webmaster of The Space Place, NASA/JPL's award-winning web site for children, which offers fun activities and amazing facts related to space science and technology and specific NASA missions. diane.k.fisher@jpl.nasa.gov. THE BASICS OF SPACE FLIGHT # Honors and Kudos We've Received We're delighted to have received so many awards and testimonials for The Basics of Space Flight. It's our pleasure to share some of them with you on this page, along with a bit of the document's history. To monitor and command interplanetary robotic spacecraft, JPL's mission controllers need to be grounded in fundamentals of physics and astronomy as relevant to space flight missions, and understand the basics of spacecraft design and mission life cycles. Before 1993, there was no single document that could point mission controllers toward even the spacecraft and mission basics for deep space missions, much less the physics and astronomy basics. So the operations training group (of what was then called the Mission Operations Section), calling on the considerable writing talents of David Doody, a veteran mission controller and amateur astronomer, and George Stephan, training engineer, developed a tutorial workbook with the specific objective of giving mission controllers a context for the task- and mission-specific training they would receive later. The result was the *Basics of Space Flight Learners'* Workbook, first published internally at JPL in August 1993. # ... And How It Kinda Got Out of Hand ... The supervisor of the training group, Larry Bryant, recognizing the general educational value of the workbook, showed it to his daughter's science teacher at La Cañada High School near JPL. The teacher immediately adopted parts of it for use in his classes. The document was quickly cleared for public release, and now, over seven years later, interest in *Basics* continues to accelerate, as this World-wide Web version becomes internationally known and commended. To summarize the various forms of dissemination and recognition *Basics* has enjoyed-- - February 1994: Workbook is made available to JPL's Teacher Resource Center, with parts of it used in numerous schools to supplement science curricula. - April 1994: Workbook is available on the Web and is soon linked from JPL's public home page, as well as numerous other sites related to astronomy and space exploration. - June 1994: Basics is used by the Southern California Area Modern Physics Institute (SCAMPI), a National Science Foundation-funded program to upgrade physics teachers' training, with many of the teachers going on to use parts of it as classroom materials. - February 1995: The Operations Systems Training Group receives a NASA Group Achievement Award "in recognition of outstanding contributions to the educational community by developing educational materials that can capture the interest and imagination of the world's youth." - March 1995: The Workbook wins the Award of Merit in the 1994 Region 8 (California, Oregon, Washington, Arizona, Nevada, and Hawaii) Society for Technical Communication publication contest. - May 1996: Netguide magazine ("The #1 Guide to Everything on the Net") gives Basics of Space Flight Web site a four-star rating. - May 1996: The French Space Agency expresses plans to have *Basics* translated into French. - July 1996: Permission is given *Basics of Space Flight* to appear in the book *Yahooligans: The Kid's Web Guide*, published by IDG Books Worldwide, Inc. - October 1996: Lycos lists *Basics of Space Flight* in its top 5% of Web sites. - November 1996: *Basics of Space Flight* wins a <u>SpaceViews "Space Site of the Week"</u> award. - November 1996: *Basics of Space Flight* receives a ZIA Reviewed Site Award and is linked to ZIA, the family site. - December 1996: PC Computing includes Basics of Space Flight in its list of the top 1001 Web sites, only 8 of which were under the topic of Science/Aerospace! - January 1997: Basics of Space Flight wins the Award of Excellence in the World Wide Web Page competition sponsored by the Society for Technical Communication and administered by its Lone Star Chapter in Dallas, Texas. - March 1997: Basics of Space Flight is named one of the best education-related sites on the Web by <u>The Education Index</u>. - May 1997: Basics of Space Flight site is selected to receive the <u>Griffith Observatory</u> <u>Star Award</u> for the week of May 11-17 for excellence in promoting astronomy to the public through the World Wide Web. - June 1997: Basics of Space Flight is recognized with the Dr. Matrix Award for Science Excellence from "Dr. Matrix Weird Web World of Science." Sites receiving this award are distinguished by the quality of their content alone, if it serves the interests of discovery, mental enrichment and thoughtful enjoyment. Dr. Matrix says, "This award doesn't go to 'cool' sites. It goes to the great sites." - October 1998: Awarded a Snap Editors' Choice designation in recognition of its excellence in design, content and editorial presentation. Synopsis reads "[This] NASA - training module is an excellent introduction to general space flight concepts and deep-space missions. The tutorial and detailed workbook are highly technical, but people with a grasp of scientific principles will have no problems." - August 1999: Selected as a "New Scientist magazine Hot Spots site in the space sciences. - July 2000: Awarded a Five Star rating by Schoolzone's panel of over 400 expert teachers. This is in recognition of the fact that it is an outstanding educational site: useful for teaching and learning and easy to navigate. - July 2000: Selected as a "Key Resource" in Astronomy and Space by Links2Go. - November 2000: Selected as an <u>edhelper.com</u> Honor Roll Site. - February 2001: Selected Space Site of the Week by Space Careers. - April 2001: <u>Astronomylinks.com</u> "Stellar Link Award" for the week of April 8. This award recognizes the very best in astronomy and space related links. To receive the award, a site must be educational, informative, current, and nicely designed with compelling content. # And a few testimonials . . . "I just spent a very enjoyable night reading the entire contents of the *Basics of Space Flight Learners' Workbook...* The entire document is one of the best pieces of work I've encountered on the net, and was just a joy to read (I couldn't put down my workstation,' says happy WWW user!) I'll use it as an example of what a reference work should read like: Fun to read, to the point, packed full of information, and moves quickly. I only wish everything that was tossed onto my desk could be written so precisely." (from an AOL subscriber) "I just wanted to say that your Basics of Space Flight Learners' Workbook is very informative. I am currently enrolled in an entry level astronomy class. I was assigned a paper on space travel, and I did not understand well enough the subject to write an accurate and in depth paper. After reading through the workbook, I feel that I am much better informed. As an added bonus, I have become more interested in the subject matter. Your workbook is much better written and more informative than
the text we are currently using. All in all, I'd like to commend, praise, and thank you for making such a resource available to the public. It has helped me tremendously." (undergraduate student) "I cannot thank you enough for offering this course over the internet. I am at present employed with the USAF as a civilian in the Milstar system. Everything I have read so far has been of great value in reviewing and expanding upon those areas we brushed upon while attending the initial space systems training. Again sir, thank you for filling the void." (from a reader at a U.S. Air Force Base) "I was looking for an explanation of one specific thing--the X-band. What it was used for and why, specifically relating to receiving antennas. Not only did I find that, in a real easy-to-digest form, I found a whole encyclopedia of space flight, something I wish I'd had when I first started writing about this stuff 20 years ago. Thanks. Please don't take it off the Web. Should be required reading for anyone in the field or writing about it. I really appreciate it." (from a university Public Information Coordinator) "What an excellent piece of work!!! It just completes my admiration of JPL... Thank you for your clear and lucid description of a very complex subject." (from a reader in the U.K.) HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS | SECTION I | |---------------------| | ENVIRONMENT | | 1 The Solar System | | 2 Reference Systems | 3 Gravity & Mechanics 4 Trajectories <u>**5** Planetary Orbits</u> <u>**6**</u> Electromagnetics **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network # Flight Participant's Guide Welcome to the <u>Basics of Space Flight</u>. The authors hope you'll enjoy and benefit from using this document. At the end, you'll be offered a certificate of completion that you can fill out and give your supervisor for inclusion in your training record. #### **Quizzes** Quizzes help you solidify new knowledge and evaluate your own progress, but you may skip them if you wish. Selecting "CHECK ANSWERS..." scores the quiz for you based on the number of correct selections versus the number of possible selections in the quiz. No records are kept. #### **Animations** Some images can display animation if you click them. The're controlled by imbedded JavaScript. The large animated .gif file won't download until you click, because it would be distracting, or you might have limited bandwidth. To load and start an animation, click the image. To stop it, click it again. Too many windows on your screen may tax computer "power" causing animations to run too slowly, but if they're too fast, you might choose to run additional programs to use up computing power and slow the animations. # **Navigating Around** Selecting "NEXT PAGE" takes you through the whole document, including quizzes. "PRECEDING PAGE" skips over any quiz or score pages, to the last text page. This may be different from where your browser's "BACK" button takes you. The Table of Contents appears on each page so you may select any chapter. To see all the topics in all the chapters, select "INDEX" from the menu bar. The "SEARCH BSF" function, located in the bottom section of every page, lets you search through the whole Basics of Space Flight (BSF) document for any word or string of text. It is not case-sensitive. # **Introducing Abbreviations** Except units of measure, abbreviated terms are spelled out the first time they are used. Thereafter, the abbreviations are generally used alone. They can all be found in the Glossary. # **Glossary** When you encounter an abbreviation or word you don't understand, select "GLOSSARY" from the bottom menu bar. Then use your browser's "FIND" capability to locate the word. You should also have an English dictionary for words and abbreviations not listed in the Glossary or Units of Measure. Throughout the text, important new words and phrases are underlined as they are introduced. Most of these are also listed in the glossary. #### **Units of Measure** Throughout this website, measurements are expressed in SI, the International System of Units (the modern metric system of measurement). You will find them all explained, along with a table of metric to English conversions, on the <u>Units of Measure</u> page, linked from the Menu Bar at the bottom section of each page. #### **Editorial** Editorial notes on the original document, the 2001 update, the authors, acknowledgements, image credits, honors received, etc. appear on a page linked only to the Home Page. Look for the "EDITORIAL" link under the picture there. Also, some images throughout the text are linked to information that you can view by clicking the image. # **SECTION I** ENVIRONMENT #### **1.1** The Solar System In Cosmic Perspective, Motions Within the Solar System, Distances Within the Solar System, The Sun, Our Bubble of Interplanetary Space. ## **1.2** The Solar System The Terrestrial Planets, Earth's Radiation Environment, Terrestrial Planetary Data, The Jovian Planets, Satellites of the Jovian Planets, Rings, Inferior and Superior Planets, Phases of Illumination, Conjunction, Transit, Occultation, Opposition. ## **1.3** The Solar System The Minor Planets, Near Earth Objects (NEOs), Other Asteroids, Comets, Meteoroids, Meteors, Meteorites. #### **2.1** Reference Systems Terrestrial Coordinates, Earth's Rotation, Precession of Earth's Axis, Nutation, Revolution of Earth, Epochs, Making Sense. # **2.2** Reference Systems The Celestial Sphere, Declination and Right Ascension, HA-DEC versus AZ-EL. # **2.3** Reference Systems Time Conventions, SOE Illustration. ## 3.1 Gravity & Mechanics Gravitation, Ellipses. ## **3.2** Gravity & Mechanics Newton's Principles of Mechanics, Acceleration, Non-Newtonian Physics. #### **3.3** Gravity & Mechanics Acceleration in Orbit, Kepler's Laws, Gravity Gradients & Tidal Forces. #### **3.4** Gravity & Mechanics How Orbits Work, The Key to Space Flight, Orbiting a Real Planet, A Periapsis by Any Other Name, Freefall. #### **4** Trajectories Hohmann Transfer Orbits, Type I and II Trajectories, Gravity Assist Trajectories, Enter the Ion Engine. # 5 Planetary Orbits Orbital Parameters and Elements, Geosynchronous Orbits, Geostationary Orbits, A Little GTO, Polar Orbits, Walking Orbits, Sun Synchronous Orbits, Lagrange points. # **6.1** Electromagnetics Electromagnetic Radiation, The Inverse Square Law. # **6.2** Electromagnetics Electromagnetic Spectrum, Waves or Particles, Natural and Artificial Emitters. # **6.3** Electromagnetics Radio Frequencies, The Whole Spectrum, Atmospheric Transparency, Radio Frequency Interference, Spectroscopy. # **6.4** Electromagnetics The Doppler Effect, Differenced Doppler. # **6.5** Electromagnetics Reflection, Planetary Radar, Reflection of X-rays. # **6.6** Electromagnetics Refraction, Phase. #### **SECTION II** FLIGHT PROJECTS # **7.1** Mission Inception Conceptual Study, Phase A: Preliminary Analysis, Phase B: Definition. # **7.2** Mission Inception Phase C/D: Design and Development, Operations Phase, Design Considerations, Budget, Design Changes, Resource Contention, Tracking Capabilities, Data Return. # **8** Experiments The Scientific Community, Gathering Scientific Data, Science and Engineering Data, The Science Data Pipeline, Data Gaps, Radio Science Occultations, Solar Conjunction, Gravitational Waves, Celestial Mechanics, Gravity Field Surveys, Dissemination of Results. # 9 S/C Classification Flyby Spacecraft, Orbiter Spacecraft, Atmospheric Spacecraft, Lander Spacecraft, Penetrator Spacecraft, Rover Spacecraft, Observatory Spacecraft, Communications Spacecraft, For Further Browsing. # 10 Telecommunications Transmitters and Receivers, Signal Power, Uplink and Downlink, Phase Lock, One-way, Two-way, Three-way, Coherence, Data Glitch Going Two-way, TWNC On, Modulation and Demodulation, Carrier and Subcarrier, Beacons, Symbols and Bits and Coding, Multiplexing, Telemetry Lock, Channelization. # 11.1 Onboard Systems Systems, Subsystems, and Assemblies, A Convenient Illustration, Structure Subsystem, Data Handling Subsystems, Sequence Storage, Spacecraft Clock, Telemetry Packaging and Coding, Data Storage, Fault Protection and Safing. # 11.2 Onboard Systems Attitude and Articulation Control Subsystems, Stabilization, Celestial Reference, Inertial Reference, Telecommunications Subsystems, High-Gain Antennas, Low-Gain Antennas, Medium-gain Antennas, Spacecraft Transmitters, Spacecraft Receivers. #### 11.3 Onboard Systems Electrical Power Supply and Distribution Subsystems, Photovoltaics, Radioisotope Thermoelectric Generators, Electrical Power Distribution, Electrical Power Storage. # 11.4 Onboard Systems Temperature Control Subsystems, Micro-meteoroid Protection, Propulsion Subsystems, Mechanical Devices Subsystems, Block Diagram Illustration, Redundancy and Flexibility, Advanced Technologies. # **12** Science Instruments Science Payload, Direct- and Remote-sensing Instruments, Active and Passive Instruments, High-energy Particle Detectors, Low-Energy Charged-Particle Detectors, Plasma Instruments, Dust Detectors, Magnetometers, Plasma Wave Detectors, Planetary Radio Astronomy Instruments, Imaging Instruments, The Magnetosphere Imager, Polarimeters, Photometers, Spectrometers, Infrared Radiometers, Other Instruments, Combinations, Cooling, Scan Platforms, Synthetic Aperture Radar Imaging, Altimeters, Some Links to Spacecraft Science Instrument Pages. <u>13 Navigation</u> Navigation Data Acquisition, Spacecraft Velocity Measurement, Spacecraft Distance Measurement, Spacecraft Angular Measurement, Optical Navigation, Orbit Determination, Trajectory Correction Maneuvers, Orbit Trim Maneuvers. #### **SECTION III** FLIGHT OPERATIONS # 14 Launch Launch
Vehicles, Launch Sites, Launch Windows, Preparations For Launch. # 15 Cruise Spacecraft Checkout and Characterization, Real-time Commanding, Typical Daily Operations, Monitoring Spacecraft and Ground Events, Tracking the Spacecraft in Flight, Preparation for Encounter. # 16.1 Encounter Flyby Operations, Planetary Orbit Insertion Operations, System Exploration or Planetary Mapping. # 16.2 Encounter Occultations, Gravity Field Surveying, Atmospheric Entry and Aerobraking, Descent and Landing, Balloon Tracking, Sampling. # **17** Extended Operations Completion of Primary Objectives, Additional Science Data, Orbiting Relay Operations, End of Mission. # **18.1** Deep Space Network The Seven DSN Data Systems, Frequency & Timing System, Tracking System, Telemetry System, Command System, Monitor System, Radio Science System, Very Long Baseline Interferometry System, The DSN Facilities, A Closer Look at the DSCCs. # **18.2** Deep Space Network DSS Designations, The 70-m Subnet, The 34-m HEF Subnet, The 34-m BWG Subnet, The 26-m Subnet, Arraying, Advances in the DSN. # 18.3 Deep Space Network Data Flow at the DSCC, Colorful Equipment, Data At JPL. # 19 Completion Certificate HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS # **Objectives:** Upon completion of this chapter you will be able to state distances of objects within the solar system in terms of light-time, describe the sun as a typical star, relate its share of the mass within the solar system, and compare the terrestrial and jovian planets. You will be able to distinguish between inferior and superior planets, describe asteroids, comets, and the Oort cloud. You will be able to describe the environment in which the solar system resides. The solar system has been a topic of study from the beginning of history. For nearly all that time, people have had to rely on long-range and indirect measurements of its objects. For all of human history and pre-history, observations were based on visible light. Then in the 20th century people discovered how to use additional parts of the spectrum. Radio waves, received here on Earth, have been used since 1931 to investigate celestial objects. Starting with the emergence of space flight in 1957, instruments operating above Earth's obscuring atmosphere could take advantage not only of light and radio, but virtually the whole spectrum (the electromagnetic spectrum is the subject of a later chapter). At last, with interplanetary travel, instruments can be carried to many solar system objects, to measure their physical properties and dynamics directly and at very close range. In the 21st century, knowledge of the solar system is advancing at an unprecedented rate. The solar system consists of an average star we call the sun, the planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. It includes the satellites of the planets, numerous comets, asteroids, meteoroids, and the interplanetary medium, which permeates <u>interplanetary space</u>. The sun is the richest source of electromagnetic energy in the solar system. The sun's nearest known stellar neighbor is a red dwarf star called <u>Proxima Centauri</u>, at a distance of about 4.3 light years. (A light year is the distance light travels in a year, at about 300,000 km per second.) # In Cosmic Perspective Our whole solar system, together with all the local stars you can see on a clear dark night, orbits the center of our home galaxy, a spiral disk of some 200 billion stars we call the Milky Way. Interstellar space is the term given to the space between stars in the galaxy. We are beginning to find that many stars besides the sun harbor their own planets, called extrasolar planets. As of January 2001 astronomers have detected about 50 planets orbiting other stars. They are all giant, Jupiter-like #### PHOTO RELEASE NO. STScI-PR94-01 The galaxy M100 is one of the brightest members of the Virgo Cluster of galaxies. It can be seen through a moderate-sized amateur telescope. M100 is spiral shaped, like our Milky Way, and tilted nearly face-on as seen from earth. The galaxy has two prominent arms of bright stars and several fainter arms. Imaged by the <u>Hubble Space Telescope</u>. planets, made mostly of gas, since current detection methods cannot reveal smaller worlds. Their formation process is still unclear. The image at right shows a similar galaxy, known as <u>M100</u> (click the image for details). The Milky Way has two small galaxies orbiting it nearby, which are visible from the southern hemisphere. They are called the Large Magellanic Cloud and the Small Magellanic Cloud. Our galaxy, one of billions of galaxies known, is travelling through intergalactic space. On a cosmic scale, all galaxies are generally receding from each other, although those relatively close together may exhibit additional local motion toward or away from each other. # **Motions Within the Solar System** The sun and planets each rotate on their axes. Because they formed from the same rotating disk, the planets, most of their satellites, and the asteroids, all revolve around the sun in the same direction as it rotates, and in nearly circular orbits. The planets orbit the sun in or near the same plane, called the ecliptic (because it is where eclipses occur). Pluto is a special case in that its orbit is the most highly inclined (17 degrees) and the most highly elliptical of all the planets. Because its orbit is so eccentric, Pluto sometimes comes closer to the sun than does Neptune. It's interesting to note that most planets rotate in or near the plane in which they orbit the sun, since they formed, rotating, out of the same dust ring. Uranus must have suffered a whopping collision, though, to set it rotating on its side. # **Distances Within the Solar System** The most common unit of measurement for distances within the solar system is the astronomical unit (AU). One AU equals the mean distance from the sun to Earth, roughly 150,000,000 km. JPL's Deep Space Network refined the precise value of the AU in the 1960s by obtaining radar echoes from Venus. This measurement was important since spacecraft navigation depends on accurate knowledge of the AU. Another way to indicate distances within the solar system is terms of light time, which is the distance light travels in a unit of time. Distances within the solar system, while vast compared to our travels on Earth's surface, are comparatively small-scale in astronomical terms. For reference, Proxima Centauri, the nearest star at about 4 light years away, is over 265,000 AU from the sun. | Light Time | Approximate Distance | Example | | |-------------------|-----------------------------|-----------------------------|--| | 1 second | 299,792 km | ~0.75 Earth-Moon distance | | | 1 minute | 18,000,000 km | 0.125 AU | | | 8.3 minutes | 150,000,000 km | Earth-Sun distance (1 AU) | | | 1 hour | 1,000,000,000 km | ~1.5 x Sun-Jupiter Distance | | | 10.75 hours | 78 AU | Voyager-1 (September 2000 | | | | | | | | 4 years | 265,000 AU | Distance to next closest star | | |---------|------------|-------------------------------|--| |---------|------------|-------------------------------|--| # The Sun The <u>sun</u> is a typical star. Its <u>spectral classification</u> is "G2 V." G2 basically means it's a yellow-white star, and the roman numeral V means it's a "main sequence" dwarf star (by far the most common) as opposed to supergiant, or sub-dwarf, etc. The sun dominates the gravitational field of the solar system; it contains about 99.85% of the solar system's mass. The planets, which condensed out of the same disk of material that formed the sun, contain only about 0.135% of the mass of the solar system. Satellites of the planets, comets, asteroids, meteoroids, and the interplanetary medium constitute the remaining 0.015%. Even though the planets make up only a small portion of the solar system's mass, they do retain the vast majority of the solar system's angular momentum. This storehouse of momentum can be utilized by interplanetary spacecraft on so-called "gravity-assist" trajectories. # Mass Distribution Within the Solar System | 99.85% | Sun | |--------|---| | 0.135% | Planets | | 0.015% | Comets Satellites Minor Planets Meteroids Interplanetary Medium | The <u>sun</u>'s gravity creates extreme pressures and temperatures within itself, sustaining a thermonuclear reaction fusing hydrogen nuclei and producing helium nuclei. This reaction yields tremendous amounts of energy, causing the material of the sun to be plasma and gas. These thermonuclear reactions began about 5×10^9 years ago in the sun, and will probably continue for another 5×10^9 years. The apparent surface of the sun has no clean physical boundary, as solid planets do, although it appears as a sharp boundary when seen from the distance of Earth. Click the SOHO solar image at right for more details about the image. The sun rotates once on its axis within a period of approximately 28 days at its equator. Because the sun is a gaseous body, not all its material rotates together. Solar matter at very high latitudes takes over 30 days to complete a rotation while matter near the equator goes around in about 24 days. Our star's output varies slightly over an 11-year cycle, during which the number of sunspots changes. The Sun is like a fluid magnet! Huge magnetic loops can be seen extending tens of thousands of km into space, trapping hot gases inside them. We have seen such loop systems develop into extremely complex, so-called 'active regions' where loops clash and twist like elastic bands before some kind of break down results in the ejection of clouds or streams of particles into space. Image and caption courtesy of the Solar and Heliospheric Observatory (SOHO). The sun's axis is tilted about 7.25 degrees to the axis of the Earth's orbit, so we
see a little more of the sun's northern polar region each September and more of its southern region in March. The sun has strong magnetic fields that are associated with sunspots. The solar magnetic field is not uniform and is very dynamic. Solar magnetic field variations and dynamics are targets of major interest in the exploration of the solar system. These and many other aspects of the sun are the subjects of ongoing research. # **Our Bubble of Interplanetary Space** The "vacuum" of interplanetary space includes copious amounts of energy radiated from the sun, some interplanetary and interstellar dust (microscopic solid particles) and gas, and the solar wind. The <u>solar wind</u> is a flow of lightweight ions and electrons (which together comprise plasma) thrown from the sun. The solar wind inflates a bubble, called the heliosphere, in the surrounding interstellar medium (ISM). The solar wind has a visible effect on comet tails. It flows outward from our star at about 400 km per second, measured in the vicinity of Earth's orbit, and the <u>Ulysses</u> spacecraft found that it approximately doubles its speed at high solar latitudes. Diagram courtesy Dr. Gary Zank, University of Delaware The boundary at which the solar wind meets the ISM, containing the collective "solar" Dr. Gary Zank's color graphic depicting the Heliosphere is from American Scientist January-February, Volume 88, No. 1, The Galactic Environment of the Sun, Figure 7, reproduced by permission. wind from other local stars in our galaxy, is called the <u>heliopause</u>. This is where the solar wind and the sun's magnetic field stop. The boundary is theorized to be roughly teardrop-shaped, because it gets "blown back" to form a heliotail, as the sun moves through the ISM (toward the right in the diagram above). The sun's relative motion may also create an advance bow shock, analogous to that of a moving boat. This is a matter of debate and depends partly on the strength of the interstellar magnetic field. But before it gets out to the heliopause, the solar wind is thought to slow to subsonic speeds, creating a <u>termination shock</u>. This appears at the perimeter of the green circle in the diagram. Its actual shape, whether roughly spherical or teardrop, depends on magnetic field strengths, as yet unknown. In the diagram above, temperatures are theorized; none have been actually measured beyond Voyager 1's distance. Note that even with the high particle temperatures, their density is so low that massive objects like spacecraft remain very cold (as long as they are shaded, or distant, from the sun). The white lines represent charged particles, mostly hydrogen ions, in the interstellar wind. They are deflected around the heliosphere's edge (the heliopause). The pink arrow shows how neutral particles penetrate the heliopause. These are primarily hydrogen and helium atoms, which are mostly not affected by magnetic fields, and there are also heavier dust grains. These interstellar neutral particles make up a substantial fraction of the material found within the heliosphere. The little black + in the green area represents the location of Voyager 1, humanity's most distant object at 80 AU (as of January 2001). The solar wind changes with the 11-year solar cycle, and the interstellar medium is not homogeneous, so the shape and size of the heliosphere probably fluctuate. The solar magnetic field is the dominating magnetic field within the heliosphere, except in the immediate environment of planets which have their own magnetic fields. It can be measured by spacecraft throughout the solar system, but not here on earth, where we are shielded by our planet's own magnetic field. The actual properties of the interstellar medium (outside the heliosphere), including the strength and orientation of its magnetic field, are important in determining the size and shape of the heliopause. Measurements that the two Voyager spacecraft will make in the region beyond the termination shock, and possibly beyond the heliopause, will provide important inputs to models of the termination shock and heliopause. Even though the Voyagers will sample these regions in discrete locations, this information will result in more robust overall models. For further information on this vast subject and its many related topics, search the web for "heliosphere," "Alfven waves," "pickup ions," and "local interstellar cloud." | HOME GUIDE IND | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |---|--|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems | SECTION II FLIGHT PROJECTS 7 Mission Inception | SECTION III FLIGHT OPERATIONS 14 Launch | | 3 Gravity & Mechanics 4 Trajectories | 8 Experiments9 S/C Classification10 Telecommunications | 15 Cruise16 Encounter17 Extended Operations | | 5 Planetary Orbits6 Electromagnetics | 11 Onboard Systems 12 Science Instruments 13 Navigation | 18 Deep Space Network | # The Sun and Interplanetary Space # 1.01 The sun and all its neighboring stars orbit the center of: The universe. The solar system. A spiral galaxy. Intergalactic space. # 1.02 True or false? All the sun's planets revolve around it in the same direction. True False # 1.03 Which of the following describe the Astronomical unit (AU)? About a Light year. Sun-earth mean distance. Earth-Moon mean distance. About 1.5x108Km. # 1.04 The sun is... A red giant star. A yellow-white dwarf star. A supergiant star. Not a star. # 1.05 Even though the planets make up a small fraction of the solar system's mass, they do retain the vast majority of the solar system's... Heat. Volume. Angular momentum. Hydrogen. # 1.06 The solar wind and solar magnetic field stop at the... Heliosphere. Heliopause. Termination shock. Heliotail. #### **SKIP ANSWER CHECK** | HOME GUIDE IND | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |---|---|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter 17 Extended Operations 18 Deep Space Network | | | 13 Navigation | | # **The Terrestrial Planets** The planets Mercury, Venus, Earth, and Mars, are called terrestrial because they have a compact, rocky surface like Earth's terra firma. The terrestrial planets are the four innermost planets in the solar system. None of the terrestrial planets have rings, although Earth does have belts of trapped radiation, as discussed below. Only Earth has a substantial planetary magnetic field. Mars and the Moon have localized regional magnetic fields at different places across their surfaces, but no global field. Of the terrestrial planets, Venus, Earth, and Mars have significant atmospheres. The gasses present in a planetary atmosphere are related to a planet's size, mass, temperature, how the planet was formed, and whether life is present. The temperature of gases may cause their molecules or atoms to achieve velocities that escape the planet's gravitational field. This contributes to Mercury's lack of a permanent atmosphere, as does its proximity to the source of the relentless solar wind. The presence of life on Earth causes oxygen to be abundant in the atmosphere, and in this Earth is unique in our solar system. Without life, most of the oxygen would soon become part of the compounds on the planet's surface. Thus, the discovery of oxygen's signature in the atmosphere of an extrasolar planet would be significant. Even though Mercury lacks an atmosphere to speak of. Even though most of its surface is very hot, there is strong evidence that water ice exists in locations near its north and south poles which are kept permanently-shaded by crater walls. This evidence comes from Earth-based radar observations of the innermost planet. The discovery of permanently shaded ice at the poles of Earth's Moon strengthens arguments that the indications of ice on Mercury may be real. <u>Venus</u>'s atmosphere of carbon dioxide is dense, hot, and permanently cloudy, making the planet's surface invisible. Its best surface studies have come from landers and imaging radar from orbiting spacecraft. As of November 2000, <u>Earth</u> is still the only place known to harbor life. And life has flourished here since the planet was young. Our home planet is also unique in having large oceans of surface water, an oxygen-rich atmosphere, and shifting crustal sections floating on a hot mantle below, described by the theory of plate tectonics. Mars' atmosphere, also carbon dioxide, is much thinner than Earth's, but it sustains wispy clouds of water vapor. Mars has polar caps of carbon dioxide ice and water ice. The planet's surface shows strong evidence for extensive water coverage in its distant past, as well as possible evidence for water flow in small springs during recent times. # **Earth's Radiation Environment** JPL's first spacecraft, Explorer 1, carried a single scientific instrument devised and operated by James Van Allen and his team from the University of Iowa. Early in 1958 the experiment discovered bands of rapidly moving charged particles trapped by Earth's
magnetic field in a doughnut-shaped region surrounding the equator. The belts that carry Van Allen's name have two areas of maximum density. The inner region, consisting largely of protons with an energy greater than 30 million EV, is centered about 3,000 km above Earth's surface. The outer belt is centered about 15,000 to 20,000 km up, and contains electrons with energies in the hundreds of millions of EV. It also has a high flux of protons, although of lower energies than those in the inner belt. Flight within these belts can be dangerous to electronics and to humans because of the destructive effects the particles have as they penetrate microelectronic circuits or living cells. Most Earth-orbiting spacecraft are operated high enough, or low enough, to avoid the belts. The inner belt, however, has an annoying portion called the South Atlantic Anomaly (SAA) which extends down into low-earth-orbital altitudes. The SAA can be expected to cause problems with spacecraft which pass through it. # **Terrestrial Planetary Data** This table compares features of the terrestrial planets in terms of the values for Earth. Light minutes are often used to express distances within the region of the terrestrial planets, useful because they indicate the time required for radio communication with spacecraft at their distances. If you click on the planet's name at the top of the table, you'll see a complete set of technical data for the planet, with a comparison to Earth. Here is a more extensive table of planetary data. | | Mercury | <u>Venus</u> | Earth | Mars | |-------------------------------------|---------|-------------------|-------|------------------| | Mean distance from sun (AU) | 0.387 | 0.723 | 1 | 1.524 | | Light minutes from sun | 3.2 | 6.0 | 8.3 | 12.7 | | Mass (x Earth) | 0.0553 | 0.815 | 1 | 0.107 | | Equatorial Radius (x Earth) | 0.383 | 0.949 | 1 | 0.533 | | Rotation period
(Earth days) | 175.942 | -243 (retrograde) | 1 | 1.027 | | Orbit period
(Earth years) | 0.241 | 0.615 | 1 | 1.881 | | Natural Satellites | 0 | 0 | 1 | 2 | | Surface Atmospheric Pressure (bars) | Near 0 | 92 | 1 | .0069
to .009 | | Global Magnetic Field | Faint | None | Yes | None | #### Mean Distances of the Terrestrial Planets from Sun Orbits are drawn approximately to scale. #### **The Jovian Planets** Jupiter, Saturn, Uranus, and Neptune are known as the <u>Jovian</u> (Jupiter-like) planets, because they are all gigantic compared with Earth, and they have a gaseous nature like Jupiter's -- mostly hydrogen, with some helium and trace gases and ices. The Jovian planets are thus referred to as the "gas giants" because gas is what they are mostly made of, although some or all of them probably have small solid cores. All have significant planetary magnetic fields, rings, and lots of satellites. Jupiter is more massive than all the other planets combined. It emits electromagnetic energy from charged atomic particles spiraling through its strong magnetic field. If this sizzling magnetosphere were visible to our eyes, Jupiter would appear larger then the full Moon in Earth's sky. The trapped radiation belts near Jupiter present a hazard to spacecraft as do Earth's Van Allen belts, although the Jovian particle flux and distribution differ from Earth's. Bringing a spacecraft close to Jupiter presents a hazard mostly from ionized particles. Spacecraft intended to fly close to Jupiter must be designed with radiation-hardened components and shielding. Spacecraft using Jupiter for gravity assist may also be exposed to a harsh radiation dose. Instruments not intended to operate at Jupiter must be protected by being powered off and by having detectors covered. <u>Saturn</u>, the farthest planet easily visible to the unaided eye, is known for its extensive, complex system of rings, which are very impressive even in a small telescope. Over 280,000 km in diameter (out to the F ring), Saturn's main rings are less than a single kilometer in thickness. Continued study of Saturn's rings can yield new understandings of orbital dynamics, applicable to any system of orbiting bodies, from newly forming solar systems to galaxies. <u>Uranus</u>, which rotates on its side, and <u>Neptune</u> are of similar size and color, although Neptune seems to have a more active atmosphere despite its much greater distance from the sun. Both planets are composed primarily of rock and various ices. Their extensive atmosphere, which makes up about 15% the mass of each planet, is hydrogen with a little helium. Pluto isn't a gas giant or Jovian planet, but can it be called a terrestrial planet? Is it made of water ice? Will its nitrogen atmosphere precipitate out onto the surface as snow when farther from the sun? Is Pluto just one of many objects orbiting in the outer reaches of the solar system, one of many so-called trans-Neptunian objects? Pluto does have a large moon known as Charon. But since it has never been visited by a spacecraft, comparatively little is known about this small, distant body. #### **Satellites of the Jovian Planets** The gas giants have many satellites, and it seems more are discovered every few years. Each of Jupiter's four <u>Galilean satellites</u>, so named because Galileo Galilei discovered them in 1610, exhibits great diversity from the other. Io, the closest of these to Jupiter, is the most volcanically active body in the solar system, driven by the heat resulting from tidal forces (discussed further in Chapter 3) which flex its crust. Powerful Earth-based telescopes can observe volcanoes resurfacing Io continuously. Europa is covered with an extremely smooth shell of water ice. There is probably an ocean of liquid water below the shell, warmed by the same forces that heat Io's volcanoes. Ganymede has mountains, valleys, craters, and cooled lava flows. Its ancient surface resembles Earth's Moon. Callisto is pocked all over with impact craters, indicating that its surface has not changed since the early days of its formation. Saturn's largest moon, Titan, has a hazy nitrogen atmosphere about as dense as Earth's. Saturn also has many smaller satellites made largely of water ice. The "front" or leading side of Saturn's icy satellite Iapetus is covered in dark material of some kind. All of Uranus's five largest moons have extremely different characteristics. The surface of Miranda, the smallest, shows evidence of extensive geologic activity. Umbriel's surface is dark, Titania and Umbriel have trenches and faults, and Oberon's impact craters show bright rays similar to those on Callisto. Neptune's largest moon Triton is partly covered with nitrogen ice and snow, with currently active nitrogen geysers leaving sooty deposits on the surface downwind. #### Rings Jupiter's single equatorial dust ring can be detected at close range in visible light and from Earth in the infrared. Saturn, Uranus, and Neptune all have rings made up of myriad particles of ice, ranging in size from dust and sand to boulders. Each particle in a ring is an individual satellite of the planet in its own right. Ring particles interact with each other in complex ways, affected by gravity and electrical charge, and they interact with the thin extended atmospheres of the planets. When two satellites occupy orbits very close to each other within a ring system, one orbiting farther from the planet than a ring, and the other one orbiting closer to the planet than that ring, they perform like sheep dogs and "flock" the particles between their orbits into a narrow ring, by gravitationally interacting with the ring particles. Thus these satellites are called <u>shepherd moons</u>. #### **Jovian Planetary Data (Approximate)** | | <u>Jupiter</u> | <u>Saturn</u> | <u>Uranus</u> | <u>Neptune</u> | |-----------------------------|----------------|---------------|---------------|----------------| | Mean distance from sun (AU) | 5.20 AU | 9.58 AU | 19.20 AU | 30.05 AU | | Light hours from sun | 0.72 | 1.3 | 2.7 | 4.2 | | Mass (x Earth) | 317.8 | 95.2 | 14.5 | 17.1 | | Radius (x Earth) | 11.21 | 9.45 | 4.01 | 3.88 | | Rotation period (hours) | 9.9 | 10.7 | 17.2 | 16.1 | | Orbit period (Earth years) | 11.9 | 29.4 | 83.7 | 163.7 | | Known natural satellites (2000) | 17 | 18 | 21 | 8 | |---------------------------------|------|------------------|------------|------------------| | Rings | Dust | Extensive system | Thin, dark | Broken ring arcs | #### Mean Distances of the Jovian Planets from Sun Orbits drawn approximately to scale Pluto omitted to accommodate scale #### **Inferior and Superior Planets** Mercury and Venus are referred to as <u>inferior</u> planets, not because they are any less important, but because their orbits are closer to the sun than is Earth's orbit. They always appear close to the sun in Earth's morning or evening sky; their apparent angle from the sun is called <u>elongation</u>. The outer planets, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto are all known as <u>superior</u> planets because their orbits are farther from the sun than the Earth's. #### **Phases of Illumination** Inferior planets may pass between the Earth and the sun on part of their orbits, so they can exhibit the whole range of <u>phases</u> from the earth's point of view... from the dark "new" phase, to slim "crescent" phase to the mostly lit "gibbous" phase, to the fully illuminated "full" phase. Our own Moon, of course, does the same. Superior planets, though, usually appear gibbous, and full when at opposition (see below), from our earthly point of view. Viewed from superior planets, Earth goes through phases. Superior planets can be seen as crescents only from the vantage point of a spacecraft that is beyond them. ## Conjunction, Transit, Occultation, Opposition When two bodies appear to pass closest together in the sky, they are said to be in <u>conjunction</u>. When a planet passes closest to the sun as seen from Earth and all three bodies are approximately in a straight line, the planet
is said to be in solar conjunction. The inferior planets Venus and Mercury can have two kinds of conjunctions with the Sun: (1) An <u>inferior conjunction</u>, when the Planet or Moon appears in crescent phase when nearly between observer and sun. planet passes approximately between Earth and Sun (if it passes exactly between them, moving across the Sun's face as seen from Earth, it is said to be in <u>transit</u>); and (2) A <u>superior conjunction</u> when Earth and the other planet are on opposite sides of the Sun and all three bodies are again nearly in a straight line. If a planet disappears behind the sun because the sun is exactly between the planets, it is said to be in <u>occultation</u>. Superior planets can have only superior conjunctions with the sun. At superior conjunction the outer planet appears in its completely illuminated full phase, whether it is on the same side or the far side of the sun. The planet is said to be at opposition to the sun when, at superior conjunction, both it and the Earth are on the same side of the sun. (The Moon, when full, is in opposition to the sun; the Earth is then approximately between them.) Opposition is a good time to observe an outer planet with Earth-based instruments, because it is at its nearest point to the Earth and it is in its full phase. Inferior planets can never be at opposition to the sun, from Earth's point of view. Occultations, transits, conjunctions, and oppositions offer special opportunities for scientific observations by spacecraft. Studies of the solar corona and tests of general relativity can be done at superior conjunctions. Superior conjunctions also present challenges communicating with a spacecraft nearly behind the sun, which is overwhelmingly noisy at the same radio frequencies as those used for communications. At opposition, such radio noise is at a minimum, presenting ideal conditions for gravitational wave searches. These special opportunities and challenges are further discussed in later chapters. | <u>HOME</u> | <u>GUIDE</u> | <u>INDEX</u> | GLOSSARY | <u>UNITS OF MEASURE</u> | <u>LINKS</u> | |-------------|--------------|--------------|----------|-------------------------|--------------| | | | | | | | #### **SECTION I** **ENVIRONMENT** - 1 The Solar System - 2 Reference Systems - 3 Gravity & Mechanics - **4** Trajectories - **5** Planetary Orbits - **6** Electromagnetics #### **SECTION II** FLIGHT PROJECTS - 7 Mission Inception - **8** Experiments - 9 S/C Classification - **10** Telecommunications - 11 Onboard Systems - **12** Science Instruments - 13 Navigation #### **SECTION III** FLIGHT OPERATIONS - 14 Launch - 15 Cruise - **16** Encounter - **17** Extended Operations - 18 Deep Space Network ### **The Planets** | 1.07 Which of th | ne following | are jovian p | lanets? | |------------------|--------------|--------------|---------| |------------------|--------------|--------------|---------| | Mercury | |---------| | Venus | | Earth | | Mars | Jupiter Saturn Uranus Neptune Pluto ## 1.08 The environment of which of the following planets present(s) a serious trapped radiation hazard? Mercury Venus Earth Mars Jupiter ## 1.09 True or false? Jupiter's moon Europa has a thick hazy atmosphere. True False ## 1.10 Roughly how many light minutes (average) is Saturn from the sun? 10 30 60 80 220 #### 1.11 A superior planet is... always seen as a crescent. closer than Earth to the sun. farther than Earth from the sun. larger than Earth. #### 1.12 When the Moon is full, it is also... in transit. at greatest western elongation. at inferior conjunction. at opposition. **SKIP ANSWER CHECK** <u>HOME</u> | <u>GUIDE</u> | <u>INDEX</u> | <u>GLOSSARY</u> | <u>UNITS OF MEASURE</u> | <u>LINKS</u> | SECTION |] | |----------------|---| | ENTERIN CAR | | **ENVIRONMENT** 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories **5** Planetary Orbits 6 Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation #### **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network #### **The Minor Planets** Minor planets, also called <u>asteroids</u>, are rocky objects in orbit around the sun. Most orbit in the main asteroid belt between Mars and Jupiter, moving in the same direction as the planets. They range in size from Ceres, which has a diameter of about 1000 km, down to the size of pebbles. Sixteen have a diameter of 240 km or greater. Asteroids are classified according to their observed spectra (hence composition) and albedo, or reflectivity. More than 75% are C-type asteroids which are dark and reddish with an albedo less than 0.10. They are similar to carbonaceous chondrite CLICK IMAGE TO START / STOP ANIMATION Asteroid 433 Eros imaged by NEAR-Shoemaker October 24, 2000 from orbit 100km above surface. meteorites and exhibit about the same chemical composition as the sun minus its volatiles. About 17% are S-type asteroids, which are brighter, with an albedo of 0.10 to 0.22. They are metallic nickel-iron mixed with iron- and magnesium-silicates. Most the rest are M-type asteroids, with an albedo of 0.10 to 0.18, made of pure nickel-iron. There are many other rare types of asteroids. Seven spacecraft have crossed the main asteroid belt en route to their destinations as of the end of the 20th Century: Pioneers 10 and 11, Voyagers 1 and 2, Ulysses, Galileo (crossed twice) and Cassini. To their good fortune, none of them ever collided with any unknown asteroids. Galileo made observations of two main-belt asteroids, 951 Gaspara and 243 Ida which was found to have its own satellite-asteroid. Cassini imaged the main-belt asteroid 2685 Masursky. The number N before an asteroid's name means it was the Nth to have its orbit determined. There are relatively empty areas between the main concentrations of asteroids in the Main Belt called the Kirkwood gaps, where an object's orbital period would be a simple fraction of Jupiter's. #### The Main Asteroid Belt Orbits are drawn approximately to scale Some asteroids have orbits outside the main belt, either farther from or closer to the sun than the main belt. Those which approach Earth are called Near Earth Asteroids, NEAs. Most of the objects which approach Earth are asteroids or "dead" comets, but a few are "live" comets. Together, they are known as Near Earth Objects. #### **Near Earth Objects (NEOs)** In terms of orbital elements, NEOs are asteroids and comets with perihelion distance q less than 1.3 AU. Near-Earth Comets (NECs) are further restricted to include only short-period comets (i.e., orbital period P less than 200 years). The vast majority of NEOs are asteroids (NEAs). NEAs are divided into groups Aten, Apollo, and Amor according to their perihelion distance (q), aphelion distance (Q) and semi-major axes (a). These terms are further discussed in Chapter 5. | NEO
Group | Description | Definition | |--------------|----------------------|-----------------------------| | NECs | Near-Earth Comets | q < 1.3 AU,
P< 200 years | | NEAs | Near-Earth Asteroids | q < 1.3 AU | | Atens | Earth-crossing NEAs with semi-major axes smaller than Earth's (named after 2062 Aten). | a < 1.0 AU,
Q > 0.983 AU | |---------|---|------------------------------------| | Apollos | Earth-crossing NEAs with semi-major axes larger than Earth's (named after 1862 Apollo). | a > 1.0 AU,
q < 1.017 AU | | Amors | Earth-approaching NEAs with orbits exterior to Earth's but interior to Mars' (named after 1221 Amor). | a > 1.0 AU,
q = 1.017 to 1.3 AU | | PHAs | Potentially Hazardous Asteroids: NEAs whose Minimum Orbit Intersection Distance (MOID) with Earth is 0.05 AU or less and whose absolute magnitude (H, a measure of brightness, and therefore size) is 22.0 or brighter. | MOID <= 0.05 AU,
H <= 22.0 | #### Other Asteroids There are several hundred asteroids located near Jupiter's L4 and L5 <u>Lagrange points</u> (60 degrees ahead and 60 degrees behind Jupiter in its solar orbit), known as Trojans. Mars has a Trojan, and there may be small Trojans in Lagrange points of Earth and Venus. Small objects in the distant outer solar system might be asteroids or comets; the definitions begin to be unclear. Asteroid-like objects between Saturn and Uranus are called Centaurs. Those beyond Neptune are called trans-Neptunian objects. More distant small objects are being discovered, and, at least temporarily, being referred to as "plutoids." They begin to reach the realm of the comets. #### **Comets** <u>Comets</u> are formed of rocky material, dust, and water ice. A few have highly elliptical orbits that bring them very close to the sun and swing them deep into space, often beyond the orbit of Pluto. The most widely accepted theory of the origin of comets is that there is a huge cloud of comets called the <u>Oort Cloud</u> (after the Dutch Astronomer Jan H. Oort who proposed the theory), of perhaps 10¹¹ comets orbiting the sun at a distance of about 50,000 AU (just under a light year). These comets are near the boundary between the gravitational forces of the sun and the gravitational forces of other stars with which the sun comes into interstellar proximity every several thousand years. According to the theory, these stellar passings perturb the orbits of the comets within the Oort cloud. As a result, some may be captured by the passing star, some may be lost to interstellar space, and some of their orbits are modified from a relatively circular orbit to an extremely elliptical one coming close to the sun. Another reservoir of comets is the <u>Kuiper belt</u>, a disk-shaped region about 30 to 100 AU from the sun.
This is considered to be the source of the short-period comets. The orbit of a Kuiper belt object is sometimes perturbed by gravitational interactions with the Jovian planets causing it to cross Neptune's orbit, where eventually it may have a close encounter with Neptune, either ejecting the comet or throwing it deeper into the solar system. Unlike the planets, which have orbits in nearly the same plane, comet orbits are oriented randomly in space. Comets have been known to break up on closest approach to the sun. Discovered early in 1993, comet Shoemaker-Levy 9 had broken up apparently because of a close passage to Jupiter. It had been captured into orbit about Jupiter and eventually collided with the planet in July of 1994. The spectacular collision was widely observed. #### **Capture and Orbit of a Typical Comet** Comets are invisible until they come near the sun and develop an extended structure. These structures are diverse and very dynamic, but they all include a surrounding cloud of diffuse material, called a coma, that usually grows in size and brightness as the comet approaches the sun. The dense, inner coma often appears pointlike, but the actual nucleus is rarely seen from Earth because it is too small and dim. The coma and the nucleus together constitute the head of the comet. #### Components of a Comet in Vicinity of the Sun As some comets approach the sun they develop enormous tails of luminous material that extend for millions of kilometers from the head, away from the sun. When far from the sun, the nucleus is very cold and its material is frozen solid. In this state comets are sometimes referred to as "dirty icebergs" or "dirty snowballs," since over half of their material is ice. Approaching within a few AU of the sun, the surface of the nucleus begins to warm, and the volatiles evaporate. The evaporated molecules boil off and carry small solid particles with them, forming the comet's coma of gas and dust. When a coma develops, dust reflects sunlight, while gas in the coma absorbs ultraviolet radiation and begins to fluoresce. At about 5 AU from the sun, fluorescence usually becomes more intense than the reflected light. As the comet absorbs ultraviolet light, chemical processes release hydrogen, which escapes the comet's gravity and forms a hydrogen envelope. This envelope cannot be seen from Earth because its light is absorbed by our atmosphere, but it has been detected by spacecraft. The sun's radiation pressure and solar wind accelerate materials away from the comet's head at differing velocities according to the size and mass of the materials. Thus, relatively massive dust tails are accelerated slowly and tend to be curved. The ion tail is much less massive, and is accelerated so greatly that it appears as a nearly straight line extending away from the comet opposite the sun. Each time a comet visits the sun, it loses some of its volatiles. Eventually, it becomes just another rocky mass in the solar system. For this reason, comets are said to be short-lived, on a cosmological time scale. Many believe that some asteroids are extinct comet nuclei, comets that have lost all of their volatiles. #### **Meteoroids, Meteors, Meteorites** Meteoroids are small, often microscopic, solid particles orbiting the sun. We see them as meteors ("shooting stars" or "falling stars") when they enter Earth's atmosphere at tens of kilometers per second as they burn up from frictional heat. On almost any dark night, at least a few meteors may be seen. There are many more during several yearly meteor showers. Some display impressive fireballs, leaving cloudy trails behind. Any part of a meteor that reaches the ground is called a meteorite. As volatiles boil off from comets, they carry small solid particles with them. Particles released from comets in this way becomes a source for meteoroids, causing meteor showers as the Earth passes through them. Meteoroids also come from the asteroid belt. Some rare meteoroids are actually debris lofted from the Moon or Mars as the result of large impacts on those bodies. #### PRECEDING PAGE | NEXT PAGE HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS #### **SECTION I** **ENVIRONMENT** - 1 The Solar System - 2 Reference Systems - 3 Gravity & Mechanics - 4 Trajectories - **5** Planetary Orbits - <u>**6**</u> Electromagnetics #### **SECTION II** FLIGHT PROJECTS - 7 Mission Inception - **8** Experiments - <u>**9** S/C Classification</u> - 10 Telecommunications - 11 Onboard Systems - 12 Science Instruments - 13 Navigation #### **SECTION III** FLIGHT OPERATIONS - 14 Launch - 15 Cruise - 16 Encounter - **17** Extended Operations - 18 Deep Space Network ## **Asteroids, Comets, and Meteoroids** #### 1.13 Most asteroids orbit between which two bodies? Sun Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto #### 1.14 Are there asteroids that might impact the Earth in the future? Yes No #### 1.15 Comet nuclei are made largely of... water ice hot ionized gasses pure nickel-iron ## 1.16 What is an object from interplanetary space called after it strikes the Earth? meteorite meteoroid meteorate #### **SKIP ANSWER CHECK** | <u>HOME</u> | <u>GUIDE</u> | <u>INDEX</u> | GLOSSARY | UNITS OF MEASURE | <u>LINKS</u> | |-------------|-------------------------|----------------------|--|---|--------------| | | | FLI
<u>7 N</u> | CTION II GHT PROJECTS <u>dission Inception</u> Experiments | | ATIONS | | _ | & Mecharories ry Orbits | nics 9 S
10
11 | /C Classification Telecommunication Onboard System Science Instrum | nations 16 Encounter Extended 0 18 Deep Space | * | | | | 13 | Navigation | | | #### **Objectives:** Upon completion of this chapter you will be able to describe the system of terrestrial coordinates, the rotation of Earth, precession, nutation, and the revolution of Earth about the sun. You will be able to describe how the locations of celestial objects are stated in the coordinate systems of the celestial sphere. You will be able to describe the use of epochs and various conventions of timekeeping. Spatial coordinates and timing conventions are adopted in order to consistently identify locations and motions of an observer, of natural objects in the solar system, and of spacecraft traversing interplanetary space or orbiting planets or other bodies. Without these conventions it would be impossible to navigate the solar system. #### **Terrestrial Coordinates** A great circle is an imaginary circle on the surface of a sphere whose center is the center of the sphere. Great circles that pass through both the north and south poles are called meridians, or lines of <u>longitude</u>. For any point on the surface of Earth a meridian can be defined. The prime meridian, the starting point measuring the east-west locations of other meridians, marks the site of the old Royal Observatory in Greenwich, England. Longitude is expressed in degrees, minutes, and seconds of arc from 0 to 180 degrees eastward or westward from the prime meridian. For example, downtown Pasadena, California, is located at 118 degrees, 8 minutes, 41 seconds of arc west of the prime meridian: 118° 8' 41" W. The starting point for measuring north-south locations on Earth is the equator, a great circle which is everywhere equidistant from the poles. Circles in parallel planes to the equator define north-south measurements called parallels, or lines of Latitude. Latitude is expressed as an arc subtended between the equator and the parallel, as seen from the center of the Earth. Downtown Pasadena is located at 34 degrees, 08 minutes, 44 seconds latitude north of the equator: 34° 08' 44" N. One degree of latitude equals approximately 111 km on the Earth's surface, and exactly 60 nautical miles. Because meridians converge at the poles, the length of a degree of longitude varies from 111 km at the equator to 0 at the poles where longitude becomes a point. #### **Terrestrial Coordinates Grid** #### **Earth's Rotation** The Earth rotates on its axis relative to the sun every 24.0 hours mean solar time, with an inclination of 23.4 degrees from the plane of its orbit around the sun. Mean solar time represents an average of the variations caused by Earth's non-circular orbit. Its rotation relative to "fixed" stars (sidereal time) is 3 minutes 56.55 seconds shorter than the mean solar day, the equivalent of one solar day per year. #### **Precession of Earth's Axis** Forces associated with the rotation of Earth cause the planet to be slightly oblate, displaying a bulge at the equator. The moon's gravity primarily, and to a lesser degree the sun's gravity, act on Earth's oblateness to move the axis perpendicular to the plane of Earth's orbit. However, due to gyroscopic action, Earth's poles do not "right themselves" to a position perpendicular to the orbital plane. Instead, they precess at 90 degrees to the force applied. This <u>precession</u> causes the axis of Earth to describe a circle having a 23.4 degree radius relative to a fixed point in space over about 26,000 years, a slow wobble reminiscent of the axis of a spinning top swinging around before it falls over. #### **Precession of Earth's Axis Over 26,000 Years** Because of the precession of the poles over 26,000 years, all the stars, and other celestial objects, appear to shift west to east at the rate of .01 degree each year (360 degrees in 26,000 years). This apparent motion is the main reason for astronomers as well as spacecraft operators to refer to a common epoch such as J2000.0. At the present time in Earth's 26,000 year precession cycle, a bright star happens to be very close, less than a degree, from the north celestial pole. This star is called Polaris, or the North Star. Stars do have their own real motion, called <u>proper motion</u>. In our vicinity of the galaxy, only a few bright stars exhibit a large
enough proper motion to measure over the course of a human lifetime, so their motion does not generally enter into spacecraft navigation. Because of their immense distance, stars can be treated as though they are references fixed in space. (Some stars at the center of our galaxy, though, display tremendous speeds as they orbit close to the massive black hole located there.) #### **Nutation** Superimposed on the 26,000-year precession is a small nodding motion with a period of 18.6 years and an amplitude of 9.2 arc seconds. This <u>nutation</u> can trace its cause to the 5 degree difference between the plane of the Moon's orbit, the plane of the Earth's orbit, and the gravitational tug on one other. #### **Revolution of Earth** Earth revolves in orbit around the sun in 365 days, 6 hours, 9 minutes with reference to the stars, at a speed ranging from 29.29 to 30.29 km/s. The 6 hours, 9 minutes adds up to about an extra day every fourth year, which is designated a leap year, with the extra day added as February 29th. Earth's orbit is elliptical and reaches its closest approach to the sun, a perihelion of 147,090,000 km, on about January fourth of each year. Aphelion comes six months later at 152,100,000 km. #### **Epochs** Because we make observations from Earth, knowledge of Earth's natural motions is essential. As described above, our planet rotates on its axis daily and revolves around the sun annually. Its axis precesses and nutates. Even the "fixed" stars move about on their own. Considering all these motions, a useful coordinate system for locating stars, planets, and spacecraft must be pinned to a single snapshot in time. This snapshot is called an epoch. By convention, the epoch in use today is called <u>J2000.0</u>, which refers to the mean equator and equinox of year 2000 January 1st 12:00 hours Universal Time (UT). The "J" means Julian year, which is 365.25 days long. Only the 26,000-year precession part of the whole precession/nutation effect is considered, defining the <u>mean</u> equator and equinox for the epoch. The last epoch in use previously was B1950.0 - the mean equator and equinox of 1949 December 31st 22:09 UT, the "B" meaning Besselian year, the fictitious solar year introduced by F. W. Bessell in the nineteenth century. Equations are published for interpreting data based on past and present epochs. #### **Making Sense** Given an understanding of the Earth's suite of motions -- rotation on axis, precession, nutation, and revolution around the sun -- and given knowledge of an observer's location in latitude and longitude, meaningful observations can be made. For example, to measure the precise speed of a spacecraft flying to Saturn, you have to know exactly where you are on the Earth's surface as you make the measurement, and then subtract out the Earth's motions from that measurement to obtain the spacecraft's speed. The same applies if you are trying to measure the proper motion of a distant star -- or a star's subtle wobble, to reveal a family of planets. | SECTION |] | |----------------|---| | | | **ENVIRONMENT** 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation #### **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network ## **Chapter 2. Reference Systems** ### Earth's Coordinates, Epochs, and Motions | | 2.01 | Latitude is ex | pressed in | degrees and | parts of | degrees | |--|------|----------------|------------|-------------|----------|---------| |--|------|----------------|------------|-------------|----------|---------| North South East West #### 2.02 The use of epoch references is required mostly because of... stars' proper motion Earth's axial precession Earth's nutation Earth's orbital motion 2.03 Coordinates, epochs, and motions are interpreted to make sense of observations and measurements of natural objects and spacecraft. True False #### **SKIP ANSWER CHECK** | HOME GUIDE INDI | EX GLOSSARY UNITS | S OF MEASURE LINKS | |---|---|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter 17 Extended Operations 18 Deep Space Network | #### **The Celestial Sphere** A useful construct for describing locations of objects in the sky is the celestial sphere. The center of the earth is the center of the celestial sphere. The figure at right illustrates that the sphere's poles and equator are analogs of the corresponding constructs on the surface of the Earth. We can specify precise location of objects on the celestial sphere by giving the celestial equivalent of their latitudes and longitudes. The point on the celestial sphere directly overhead for an observer is the zenith. An imaginary arc passing through the celestial poles and through the zenith is called the observer's <u>meridian</u>. The <u>nadir</u> is the direction opposite the zenith: for example, straight down from a spacecraft to the center of the planet. #### **Declination and Right Ascension** <u>Declination</u> (DEC) is the celestial sphere's equivalent of latitude and it is expressed in degrees, just like latitude. For DEC, + and - refer to north and south. The celestial equator is 0° DEC, and the poles are $+90^{\circ}$ and -90° . <u>Right ascension</u> (RA) is the celestial equivalent of longitude. RA can be expressed in degrees, but it is more common to specify it in hours, minutes, and seconds: the sky appears to turn 360° in 24 hours, and that's 15° in an hour. An hour of RA is 15° of sky rotation. Another important feature intersecting the celestial sphere is the <u>ecliptic</u> plane. This is the plane in which the Earth orbits the sun, 23.4° from the celestial equator. Looking at the ecliptic, the great circle marking the intersection of the of the ecliptic plane on the celestial sphere, is where the sun and planets appear to travel, and it's where the Sun and Moon are during eclipses (that's where the plane and circle get their names). The zero point for RA is one of the points where the ecliptic circle intersects the celestial equator circle. It's defined to be the point where the sun crosses into the northern hemisphere beginning spring: the <u>vernal equinox</u>, also known as the <u>first point of Aries</u>. The equinoxes are defined as day and night of equal length, marking the beginning of spring and autumn. The RA and DEC of an object specify its position uniquely on the celestial sphere just as the latitude and longitude do for an object on the Earth's surface. For example, the very bright star Sirius has celestial coordinates 6 hr 45 min RA and -16° 43' DEC. #### **HA-DEC** versus AZ-EL The discussion gets a little more involved, but the rest of this page serves only to explain why there used to be an old design for Deep Space Network antennas, as well as large optical and radio telescopes, and why it all changed not too long ago. Before you can use RA and DEC to point to an object in the sky, you have to know where the RA is at present for your location, since the Earth's rotation continuously moves the fixed stars (and their RA and DEC) with respect to your horizon. If the RA of the object happens to place it overhead on your meridian, you're fine. But it probably isn't, so you determine the object's <u>hour angle</u> (HA), which is the distance in hours, minutes, and seconds westward along the celestial equator from the observer's meridian to the object's RA. In effect, HA represents the RA for a particular location and time of day. HA is zero when the object is on your meridian. Older radio telescopes were designed with one mechanical axis parallel to Earth's axis. To track an interplanetary spacecraft, the telescope points to its HA and DEC, and then simply rotates in HA about the tilted axis, called its polar axis as the Earth turns. This mounting is traditionally called an equatorial mount when used for optical telescopes. It's a fine application for a small instrument, but unsuited to heavy structures because the tilted polar bearing has to sustain large asymmetric loads. These loads include not only the whole reflector dish, but also an HA counterweight heavy enough to balance the antenna, the DEC bearing, and its DEC counterweight! Also the structure has to be designed specifically for its location, since the polar bearing's angle depends on the station's latitude. This image shows the first Deep Space Network (DSN) antenna installed at the Canberra, Australia site, looking down along the polar bearing, which is the axis of the antenna's large central wheel. This HA-DEC antenna is no longer in service, nor is its sister at the DSN site at Madrid, Spain. Its counterpart at the Goldstone, California site has been converted to a radio telescope dedicated to educational use. Click the image for an enlarged and annotated view of its complex design. A simpler system was needed for larger Deep Space Network antennas. The solution is an <u>azimuth-elevation</u> configuration. The design permits mechanical loads to be symmetric, resulting in less cumbersome, less expensive
hardware that is easier to maintain. It locates a point in the sky by elevation (EL) in degrees above the horizon, and azimuth (AZ) in degrees clockwise (eastward) from true north. These coordinates are derived from published RA and DEC by computer programs. This computerization was the key that permitted the complex mechanical structures to be simplified. In an AZ-EL system anywhere on Earth, east is 90 degrees AZ, and halfway up in EL or altitude (ALT) would be 45 degrees. AZ-EL and ALT-AZ are simply different names for the same reference system, ALTitude being the same measurement as EL evation. This image shows a DSN antenna at Goldstone that has a 70-meter aperture, over twice that of the Australian HA-DEC antenna shown above. It is currently pointing to an EL around 10°. The EL bearing is located at the apex of the triangular support visible near the middle right of the image. The whole structure rotates in AZ clockwise or counterclockwise atop the large cylindrical concrete pedestal. It is pointing east in the image, probably beginning to track a distant spacecraft as it rises. All newly designed radio telescopes use the AZ-EL system. #### PRECEDING PAGE | NEXT PAGE | HOME | <u>GUIDE</u> | INDEX | GLOSSARY | <u>UNITS OF MEASURE</u> | LINKS | |-------------|--------------|-------|----------|-------------------------|-------| |-------------|--------------|-------|----------|-------------------------|-------| #### **SECTION I** **ENVIRONMENT** - 1 The Solar System - 2 Reference Systems - **3** Gravity & Mechanics - 4 Trajectories - **5** Planetary Orbits - **6** Electromagnetics #### **SECTION II** **FLIGHT PROJECTS** - 7 Mission Inception - **8** Experiments - 9 S/C Classification - **10** Telecommunications - 11 Onboard Systems - **12** Science Instruments - 13 Navigation #### **SECTION III** FLIGHT OPERATIONS - 14 Launch - 15 Cruise - **16** Encounter - **17** Extended Operations - **18** Deep Space Network ### **Chapter 2. Reference Systems** ### Earth's Coordinates, Epochs, and Motions #### 2.04 The observer's meridian and the nadir are... not really related terms. exact opposites. both on the celestial sphere. both on the ecliptic. #### 2.05 Declination and right ascension are analogous to... each other. longitude and latitude. latitude and longitude. azimuth and elevation. 2.06 Modern radio telescopes, DSN stations, and large optical telescopes are all designed to use HA-DEC systems because of their simplicity. True False #### **SKIP ANSWER CHECK** | HOME GUIDE IND | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |--|---|--| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | <u>4 Trajectories</u> | 10 Telecommunications | 17 Extended Operations | | <u>5</u> Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | <u>6</u> Electromagnetics | 12 Science Instruments | | | | 13 Navigation | | #### **Time Conventions** Various expressions of time are commonly used in interplanetary space flight operations: - UTC, Coordinated Universal Time, is the world-wide scientific standard of timekeeping. It is based upon carefully maintained atomic clocks and is kept accurate to within microseconds worldwide. The addition or subtraction of leap seconds, as necessary, at two opportunities every year adjusts UTC for irregularities in Earth's rotation. Being the most precise worldwide time system, it is used by - astronomers, navigators, the Deep Space Network (DSN), and other scientific disciplines. Its reference point is Greenwich, England: when it is midnight there on Earth's prime meridian, it is midnight (00:00:00.000000) -- "all balls"--UTC. • UT, Universal Time also called Zulu (Z) time, was previously called Greenwich Mean Time, GMT. It is based on the imaginary "mean sun," which averages out the effects on the length of the solar day caused by Earth's slightly non-circular orbit about the sun. UT is not updated with leap seconds as is UTC. Its reference point is also Greenwich, England: when it is noon on the prime meridian, it is noon (12:00:00) UT. It is common to see outdated references to GMT, even in currently operating flight projects. It is also common to encounter references to UT or GMT when the system actually in use is UTC, for example, "Uplink the command at 1801Z." - Local time is UT adjusted for location around the Earth in time zones. Its reference point is one's immediate locality: when it is 12:00:00 noon Pacific Time at JPL, it is 20:00:00 UTC, and 13:00:00 Mountain Time in Denver, Colorado. Many locations adjust for standard time or daylight-savings time. Local time is also determined on other planets when needed. - Local time on another planet is conceived as the equivalent time for the distance of the sun from the meridian, corresponding to the same local time on Earth. It has no relation to the planet's rotation rate, in that a planet rotating more slowly than Earth would have an object in its sky at 1:00 local time move to 2:00 local time in more than an hour of clock time. Around 11:30 am or 12:30 pm at a particular location on Venus, the sun would be nearly overhead. At 5:00 pm at a particular location on Mars, the sun would be low in the west. - TRM, Transmission time is the UTC time of uplink from Earth. - OWLT, One-Way Light Time is the elapsed time it takes for light, or a radio signal, to reach a spacecraft or other body from Earth (or vice versa). Knowledge of OWLT is maintained to an accuracy of milliseconds. OWLT varies continuously as the spacecraft's distance from the Earth changes. Its reference points are the center of the Earth and the immediate position of a spacecraft or the center of a celestial body. - SCET, Spacecraft Event Time is the UTC time onboard the spacecraft. It is equal to TRM + OWLT. ERT is equal to SCET + OWLT. - SCLK, Spacecraft Clock is the value of a counter onboard a spacecraft, described further in Chapter 11. SCLK has a nearly-direct relationship with SCET: it is the best possible on-board estimate of SCET. SCLK is not as constant and stable as the UTC-derived SCET. Its units of measurement are different from SCET. Tracking and predicting the exact relationship between SCLK and SCET is accomplished by analyzing telemetered SCLK values and trends with respect to the UTC-derived SCET, and regularly producing and applying a SCLK/SCET coefficients file which tracks the gradual drift of SCLK versus SCET. • RTLT, Round-Trip Light Time is the elapsed time it takes for a signal to travel from Earth, be received and immediately transmitted or reflected by a spacecraft or other body, and return to the starting point. It is roughly equal to 2 x OWLT, but not exactly, because of the different amount of distance the signal must travel on each leg due to the constant motions of both Earth and spacecraft. For reference, RTLT from here to the Moon is around 3 seconds, to the sun, about 17 minutes. Voyager 1's RTLT at this writing in October 2000 is over 22 hours and increasing roughly an hour per year. • ERT, Earth-Received Time is the UTC of an event received at a DSN station. One more definition may be useful as background information: • TT, Terrestrial Time is one of two dynamical time expressions, which replaced Ephemeris Time, ET. TT is a measurement of time defined by Earth's orbital motion. It equates to Mean Solar Time corrected for the irregularities in Earth's motions. Navigators use TT to express planetary flybys and positions of planets and satellites. It is common to see outdated references to ET when TT is intended, even in currently operating flight projects. Several <u>additional</u> interesting timekeeping definitions may be found at the U.S. Naval Observatory website. #### **SOE Illustration** The following image is an excerpt from a flight project's Sequence of Events (SOE). It illustrates use of UTC, ERT, TRM, OWLT, RTLT, SCET, and SCLK. (The SOE in general is discussed further in Chapter 15.) Click the image for a larger view. | · CASSINI · S/ | | CE OF EVENTS: YEAR-DAY OF YEAR> 2000-331 Copyright (C)2000. C = CR2 INFUT FILE NAME> b0230d.soc U.S. Covernment spensorship under NASA Contract NAS7-1270 is acknowledged. | | | | PAGE 321 | | | | |----------------|----------------|---|--------------------------------|---|-----------------------------------|------------------------------------|-----|-----------------|--------------------------------| | NO OK | UTC GND TIME T | ACTION | | EVENT DESC | RIPTION | | DON | (4+DCHD) | S/C CLOCK | | 4237 | 331 03:44:56 E | | DEFINE ROTATIO | NAL DELTA OFFSET IN E
Y: 0.0 SARK | | COORDINATES
Z: -11.3 MRAD | | TOELTA_BASE | 331 03:13:04
1353900257:073 | | 4238 | 331 04:04:12 E | | TURN OFF CDA | ARTICULATION MECHANISM | STEPPER NOT | OR ELECTRONICS | | 79AM_MOTOR_PAR | 331 03:32:20
1353901413:073 | | 4239 | 331 04:04:22 E | | PLACE COSMIC I | DUST ANALYZER IN SLEEP | MODE OPERAT | IONS | | 79RT_SLEEP | 331 03:32:30
1353901423:073 | | 4240 | 331 04:04:32 E | | USING ALL O | IC DUST ANALYZER MEAS:
N CHANNELS | REDUCE TRUE | | | 79EVEXT_DEFINE | 331 03:32:40
1353901433:073 | | 4241 | 331 04:05:32 E | | INITIATE TEST
TEST PULSE 1 | PULSE AND AMPLITUDE E
TYPE = 2 MP AMPLIT | | XIC DUST ANALYZER | | 79DA_TEST_FULSE | 331 03:33:40
1353901493:073 | | 4242 | 331 04:06:32 E | | INITIATE TEST
TEST PULSE 1 | PULSE AND AMPLITUDE E
SILYMA YX E = 3YY | | MIC DUST ANALYZER | |
79DA_TEST_PULSE | 331 03:34:40
1353901553:073 | | 4243 | 331 04:47:54 E | | TURN PATE X | F OFFSET TURN RATE AND
: 1.8 Y: 1.9
: 0.01 Y: 0.011 | ACCELERATIO
Z: 3.3
Z: 0.019 | N PARAMETERS:
MRAD/S
MRAD/S2 | | 79ROFILE | 331 C4:16:02
1353904035:077 | | 4244 | 331 04147156 E | | DEFINE ROTATIO
X: 2.15 MRAI | ONAL ABSOLUTE OFFSET 1 | | UDE COORDINATES
Z: 2.15 MRAD | | 70FFSET | 331 04:16:06
1353904037:077 | The first vertical column in this SOE is a line item number. The next column specifies the item's UTC ground time, and the next column indicates whether that time is ERT or TRM. All on this page are ERT. Any items involving the DSN transmitter would appear as TRM. The COMMAND column specifies the command being executed on the spacecraft from the command sequence stored in the spacecraft's memory. The last column on the right shows the SCET, followed by the corresponding SCLK value at which the command executes. ** CASSINI ** SEQUENCE OF EVENTS: YEAR-DAY OF YEAR --> 2000-331 Copyright (C)2000, PAGE 321 ** CASSINI ** S/C = 082 INPUT FILE NAME --> b0230d.pef California Institute of Technology, SEQ = b0230d OUTPUT FILE NAME --> b0230d.soc U.S. Covernment sponsorship under NASA Contract NAS7-1270 is acknowledged. | | | | | | NASA Contract NAS7 | -127 | o is acknowledged. | | |------------|-----|----------------------|---|--------|--|------|---------------------|--------------------------------| | ITEM
NO | | GND TIME
HH:MM:SS | | ACTION | EVENT DESCRIPTION | DSN | COMMAND
(%=DCMD) | S/C EVENT TIME
S/C CLOCK | | 4237 | 331 | 03:44:56 | ε | | DEFINE ROTATIONAL DELTA OFFSET IN BASE ATTITUDE COORDINATES X: 0.0 MRAD Y: 0.0 MRAD Z: -11.3 MRAD | | 7DELTA_BASE | 331 03:13:04
1353900257:073 | | 4238 | 331 | 04:04:12 | Е | | TURN OFF CDA ARTICULATION MECHANISM STEPPER MOTOR ELECTRONICS | | 79AM_MOTOR_PWR | 331 03:32:20
1353901413:073 | | 4239 | 331 | 04:04:22 | E | | PLACE COSMIC DUST ANALYZER IN SLEEP MODE OPERATIONS | | 79RT_SLEEP | 331 03:32:30
1353901423:073 | | 4240 | 331 | 04:04:32 | E | | INITIATE COSMIC DUST ANALYZER MEASUREMENT CYCLE
USING ALL ON CHANNELS | | 79EVENT_DEFINE | 331 03:32:40
1353901433:073 | | 4241 | 331 | 04:05:32 | Ε | | INITIATE TEST PULSE AND AMPLITUDE LEVEL FOR COSMIC DUST ANALYZER TEST PULSE TYPE = 2 MP AMPLITUDE = 0 | | 79DA_TEST_PULSE | 331 03:33:40
1353901493:073 | | 4242 | 331 | 04:06:32 | E | | INITIATE TEST PULSE AND AMPLITUDE LEVEL FOR COSMIC DUST ANALYZER TEST PULSE TYPE = 3 MP AMPLITUDE = 0 | | 79DA_TEST_PULSE | 331 03:34:40
1353901553:073 | | 4243 | 331 | 04:47:54 | Ε | | SET SPACECRAFT OFFSET TURN RATE AND ACCELERATION PARAMETERS: TURN RATE X: 1.8 Y: 1.9 Z: 3.3 MRAD/S ACCEL X: 0.01 Y: 0.011 Z: 0.019 MRAD/S2 | | 7PROFILE | 331 04:16:02
1353904035:077 | | 4244 | 331 | 04:47:56 | Ε | | DEFINE ROTATIONAL ABSOLUTE OFFSET IN BASE ATTITUDE COORDINATES X: 2.15 MRAD Y: 0.0 MRAD Z: 2.15 MRAD | | 70FFSET | 331 04:16:04
1353904037:077 | | 4245 | 331 | 04:50:56 | E | | CHANGE SPACECRAFT TELEMETRY MODE TO S_N_ER_3 | | 6CHC_SC_TM_IMM | 331 04:19:04
1353904217:077 | | 4246 | 331 | 04:50:56 | Ε | | EXECUTE BOTH CAMERAS COMMAND ID: 440 | | 36NAC_TRIGGER | 331 04:19:04
1353904217:078 | | 4247 | 331 | 04:50:56 | E | | EXECUTE BOTH CAMERAS COMMAND ID: 440 | | 36WAC_TRIGGER | 331 04:19:04
1353904217:079 | | 4248 | 331 | 04:50:56 | 8 | | START EXECUTION OF CIRS COMMAND SEQUENCE TABLE 91 RTI EXECUTE : 0 RTT CONTROL : IMMEDIATE ATT CONTROL : RELATIVE LOOP COUNT : 1 REL EXEC TIME: 0 MSEC ABS EXEC TIME: 2001-001T00:00:00.000 | | 89EXE_CMD_SEQ | 331 04:19:04
1353904217:080 | | 4249 | 331 | 04:50:57 | Ε | | SET SPACECRAFT OFFSET TURN RATE AND ACCELERATION PARAMETERS: TURN RATE X: 1.8 Y: 1.9 Z: 3.3 MRAD/S ACCEL X: 0.01 Y: 0.011 Z: 0.019 MRAD/S2 | | 7PROFILE | 331 04:19:05
1353904218:079 | | 4250 | 331 | 04:56:43 | E | | DEFINE ROTATIONAL DELTA OFFSET IN BASE ATTITUDE COORDINATES X: 0.0 MRAD Y: 0.0 MRAD Z: -4.3 MRAD | | 7DELTA_BASE | 331 04:24:51
1353904564:080 | ### **Time Conventions** | 2.07 The world-wide scientific time sta | ındard is | |---|-----------| |---|-----------| **UTC** UT **GMT** Standard ## 2.08 At around noon local time, the sun is about overhead as viewed by an observer at... Greenwich England JPL. Venus Mars Timbuktu #### 2.09 ERT is the UTC of an event as received at a DSN station. True False #### **SKIP ANSWER CHECK** | HOME GUIDE INI | DEX GLOSSARY UNI | ITS OF MEASURE LINKS | |---|---|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter 17 Extended Operations 18 Deep Space Network | | | | | # **Chapter 3. Gravitation and Mechanics** #### **Objectives:** Upon completion of this chapter you will be able to describe the force of gravity, characteristics of ellipses, and the concepts of Newton's principles of mechanics. You will be able to recognize acceleration in orbit and explain Kepler's laws in general terms. You will be able to describe tidal effect and how it is important in planetary systems. Gravitation is the mutual attraction of all masses in the universe. While its effect decreases in proportion to distance squared, it nonetheless applies, to some extent, regardless of the sizes of the masses or their distance apart. The concepts associated with planetary motions developed by Johannes Kepler (1571-1630) describe the positions and motions of objects in our solar system. Isaac Newton (1643-1727) later explained why Kepler's laws worked, by showing they depend on gravitation. Albert Einstein (1879-1955) posed an explanation of how gravitation works in his general theory of relativity. In our solar system, planetary motions are orbits gravitationally bound to a star. Since orbits are ellipses, a review of ellipses follows. #### **Ellipses** An ellipse is a closed plane curve generated in such a way that the sums of its distances from two fixed points (called the foci) is constant. In the illustration below, the sum of Distance A + Distance B is constant for any point on the curve. #### Ellipse Foci An ellipse also results from the intersection of a circular cone and a plane cutting completely through the cone. The maximum diameter is called the major axis. It determines the size of an ellipse. Half the maximum diameter, the distance from the center of the ellipse to one end, is called the semi-major axis. The shape of an ellipse is determined by how close together the foci are in relation to the major axis. Eccentricity is the distance between the foci divided by the major axis. If the foci coincide, the ellipse is a circle. Therefore, a circle is an ellipse with an eccentricity of zero. HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS #### **SECTION I** **ENVIRONMENT** **1** The Solar System 2 Reference Systems **3** Gravity & Mechanics **4** Trajectories **5** Planetary Orbits **6** Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments ______ 9 S/C Classification 10 Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation #### **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network # Chapter 3. Gravitation & Mechanics ### **Ellipses** 3.01 Every mass in the universe attracts every other mass in the universe, no matter how distant. True False 3.02 Half the maximum diameter of an ellipse, the distance from the center to one end, is called the... Major axis Semi-major axis Eccentricity Elongation #### 3.03 A circle is an ellipse with... Major axis equal to its semi-major axis Zero elongation Zero eccentricity Two different foci #### **SKIP ANSWER CHECK** | HOME GUIDE IND | EX GLOSSARY | UNITS OF MEASURE | LINKS | |---|---|--|--------------| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics | SECTION II FLIGHT PROJECTS 7 Mission Inceptio 8 Experiments 9 S/C Classificatio 10 Telecommunica 11 Onboard System 12 Science Instrum 13 Navigation | 15 Cruise n 16 Encounter ations 17 Extended Counter ns 18 Deep Space | Operations (| | | | | | # **Chapter 3. Gravitation and Mechanics** **CONTINUED** #### **Newton's Principles of Mechanics** <u>Isaac Newton</u> realized that the force that makes apples fall to the ground is the same force that makes the planets "fall" around the sun. Newton had been asked to address the question of why planets move as they do. He established that a force of attraction toward the sun becomes weaker in proportion to the square of the distance from the sun. Newton postulated that the shape of an orbit
should be an ellipse. Circular orbits are merely a special case of an ellipse where the foci are coincident. Newton described his work in the *Mathematical Principles of Natural Philosophy* (often called simply the Principia), which he published in 1685. Newton gave his laws of motion as follows: - 1. Every body continues in a state of rest, or of uniform motion in a straight line, unless it is compelled to change that state by forces impressed upon it. - 2. The change of motion (linear momentum) is proportional to the force impressed and is made in the direction of the straight line in which that force is impressed. - 3. To every action there is always an equal and opposite reaction; or, the mutual actions of two bodies upon each other are always equal, and act in opposite directions. (Notice that Newton's laws describe the behavior of inertia, they do not explain what the nature of inertia is. This is still a valid question, as is the nature of mass.) There are three ways to modify the momentum of a body. The mass can be changed, the velocity can be changed (acceleration), or both. #### **Acceleration** Force (F) equals change in velocity (acceleration, A) times mass (M): #### F = MA Acceleration may be produced by applying a force to a mass (such as a spacecraft). If applied in the same direction as an object's velocity, the object's velocity increases in relation to an unaccelerated observer. If acceleration is produced by applying a force in the opposite direction from the object's original velocity, it will slow down relative to an unaccelerated observer. If the acceleration is produced by a force at some other angle to the velocity, the object will be deflected. These cases are illustrated below. The world standard of mass is the kilogram, whose definition is based on the mass of a metal cylinder kept in France. Previously, the standard was based upon the mass of one cubic centimeter of water being one gram, which is approximately correct. The standard unit of force is the Newton, which is the force required to accelerate a 1-kg mass 1 m/sec² (one meter per second per second). A Newton is equal to the force from the weight of about 100 g of water in Earth's gravity. That's about half a cup. A dyne is the force required to accelerate a 1-g mass 1 cm/s². #### **Non-Newtonian Physics** We know from Einstein's special theory of relativity that mass, time, and length are variable and the speed of light is constant. And from general relativity, we know that gravitation and acceleration are equivalent, that light bends in the presence of mass, and that accelerating mass radiates gravitational waves at the speed of light. Spacecraft operate at very high velocities compared to speeds we are familiar with in transportation and ballistics here on our planet. Nonetheless, spacecraft velocities do not approach a significant fraction of the speed of light, and so Newtonian physics serves perfectly well for operating and navigating throughout the solar system. Once we begin to travel between the stars, much higher velocities will be necessary, and those may well be large enough fractions of light speed that Einsteinian physics will describe their operation more precisely than Newtonian physics can. For now, spacecraft do sometimes carry out experiments to test special relativity effects on moving clocks, and experiments to test general relativity effects such as the space-time warp caused by the sun, the equivalence of gravitation and acceleration, and the search for direct evidence of gravitational waves. Some of these subjects are explored in Chapter 8. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS #### **SECTION I** **ENVIRONMENT** 1 The Solar System **2** Reference Systems **3** Gravity & Mechanics **4** Trajectories **5** Planetary Orbits 6 Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation #### **SECTION III** **FLIGHT OPERATIONS** 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network # **Chapter 3. Gravitation and Mechanics** **CONTINUED** #### **Acceleration in Orbit** Newton's first law describes how, once in motion, planets remain in motion. What it does not do is explain how the planets are observed to move in nearly circular orbits rather than straight lines. Enter the second law. To move in a curved path, a planet must have an acceleration toward the center of the circle. This is called centripetal acceleration and is supplied by the mutual gravitational attraction between the sun and the planet. #### **Motion in a Circular Orbit** #### **Kepler's Laws** Kepler's laws, as expressed by Newton, are: - 1. If two bodies interact gravitationally, each will describe an orbit that is a conic section about the common mass of the pair. If the bodies are permanently associated, their orbits will be ellipses. If they are not permanently associated with each other, their orbits will be hyperbolas (open curves). - 2. If two bodies revolve around each other under the influence of a central force (whether or not in a closed elliptical orbit), a line joining them sweeps out equal areas in the orbital plane in equal intervals of time. - 3. If two bodies revolve mutually about each other, the sum of their masses times the square of their period of mutual revolution is in proportion to the cube of the semi-major axis of the relative orbit of one about the other. The major application of Kepler's first law is to precisely describe the geometric shape of an orbit: an ellipse, unless perturbed by other objects. Kepler's first law also informs us that if a comet, or other object, is observed to have a hyperbolic path, it will visit the sun only once, unless its encounter with a planet alters its trajectory again. Kepler's second law addresses the velocity of an object in orbit. Conforming to this law, a comet with a highly elliptical orbit has a velocity at closest approach to the sun that is many times its velocity when farthest from the sun. Even so, the area of the orbital plane swept is still constant for any given period of time. T = any unit of time (hour, day, week, etc.) #### CLICK IMAGE TO START / STOP ANIMATION Kepler's third law describes the relationship between the masses of two objects mutually revolving around each other and the determination of orbital parameters. Consider a small star in orbit about a more massive one. Both stars actually revolve about a common center of mass, which is called the barycenter. This is true no matter what the size or mass of each of the objects involved. Measuring a star's motion about its barycenter with a massive planet is one method that has been used to discover planetary systems associate with distant stars. Obviously, these statements apply to a two-dimensional picture of planetary motion, whic is all that is needed for describing orbits. A three-dimensional picture of motion would include the path of the sun through space. #### **Gravity Gradients & Tidal Forces** Gravity's strength is inversely proportional to the square of the objects' distance from each other. For an object in orbit about a planet, the parts of the object closer to the planet feel a slightly stronger gravitational attraction than do parts on the other side of the object. This is known as gravity gradient. It causes a slight torque to be applied to any mass which is non-spherical and non-symmetrical in orbit, until it assumes a stable attitude with the more massive parts pointing toward the planet. An object whose mass is distributed like a bowling pin would end up in an attitude with its more massive end pointing toward the planet, if all other forces were equal. In the case of a fairly massive body such as our moon in Earth orbit, the gravity gradient effect has caused the moon, whose mass is unevenly distributed, to assume a stable rotational rate which keeps one face towards Earth at all times, like the bowling pin described above. The moon acts upon the Earth's oceans and atmosphere, causing two bulges to form. The bulge on the side of Earth that faces the moon is caused by the proximity of the moon and its relatively stronger gravitational pull on that side. The bulge on the opposite side of Earth results from that side being attracted toward the moon less strongly than is the central part of Earth. Earth's crust is also affected to a small degree. Other factors, including Earth's rotation and surface roughness, complicate the tidal effect. On planets or satellites without oceans, the same forces apply, but they cause slight deformations in the body rather than oceanic tides. This mechanical stress can translate into heat as in the case of Jupiter's volcanic moon Io. | HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE | <u>LINKS</u> | |--|--------------| |--|--------------| #### **SECTION I** **ENVIRONMENT** - 1 The Solar System - 2 Reference Systems - **3** Gravity & Mechanics - **4** Trajectories - **5** Planetary Orbits - **6** Electromagnetics #### **SECTION II** FLIGHT PROJECTS - 7 Mission Inception - **8** Experiments - 9 S/C Classification - **10** Telecommunications - 11 Onboard Systems - **12** Science Instruments - 13 Navigation #### SECTION III FLIGHT OPERATIONS - 14 Launch - 15 Cruise - **16** Encounter - **17** Extended Operations - 18 Deep Space Network #### **Mechanics** ## 3.04 To move in a circular path, a planet must experience a constant acceleration toward the star it orbits. This is its... centrifugal force caused by motion. motion caused by centrifugal force. centripetal acceleration caused by gravity. centripetal force caused by centrifugal acceleration. ## 3.05 An object orbiting the sun is moving fastest while it is nearest the sun. True False #### 3.06 A planet and its star are most accurately described as... the planet and
the star orbiting a barycenter. two objects orbiting each other. one object orbiting a fixed point. # 3.07 The decreased strength of gravity proportional to the square of distance is responsible for... gravity waves. gravitational waves. gravity graduates. gravity oscillations. gravity gradients. #### **SKIP ANSWER CHECK** | HOME GUIDE INI | DEX GLOSSARY | UNITS OF MEASURE LINKS | |--|--|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise | | 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits | 9 S/C Classification 10 Telecommunication 11 Onboard Systems | 16 Encounterons 17 Extended Operations | | 6 Electromagnetics | 12 Science Instruments 13 Navigation | | #### **Objectives:** Upon completion of this chapter you will be able to describe the use of Hohmann transfer orbits in general terms and how spacecraft use them for interplanetary travel. You will be able to describe in general terms the exchange of angular momentum between planets and spacecraft on gravity assist trajectories. When travelling among the planets, it's a good idea to minimize the propellant mass needed by your spacecraft and its launch vehicle. That way, such a flight is possible with current launch capabilities, and costs will not be prohibitive. The amount of propellant needed depends largely on what route you choose. Trajectories that by their nature need a minimum of propellant are therefore of great interest. #### **Hohmann Transfer Orbits** To launch a spacecraft from Earth to an outer planet such as Mars using the least propellant possible, first consider that the spacecraft is already in solar orbit as it sits on the launch pad. This existing solar orbit must be adjusted to cause it to take the spacecraft to Mars: The desired orbit's perihelion (closest approach to the sun) will be at the distance of Earth's orbit, and the aphelion (farthest distance from the sun) will be at the distance of Mars' orbit. This is called a <u>Hohmann Transfer</u> orbit. The portion of the solar orbit that takes the spacecraft from Earth to Mars is called its trajectory. From the above, we know that the task is to increase the apoapsis (aphelion) of the spacecraft's present solar orbit. Recall from Chapter 3... A spacecraft's apoapsis altitude can be raised by increasing the spacecraft's energy at periapsis. Well, the spacecraft is already at periapsis. So the spacecraft lifts off the launch pad, rises above Earth's atmosphere, and uses its rocket to accelerate in the direction of Earth's revolution around the sun to the extent that the energy added here at periapsis (perihelion) will cause its new orbit to have an aphelion equal to Mars' orbit. After this brief acceleration away from Earth, the spacecraft has achieved its new orbit, and it simply coasts the rest of the way. The launch phase is covered further in Chapter 14. #### **Earth to Mars via Least Energy Orbit** Getting to the planet Mars, rather than just to its orbit, requires that the spacecraft be inserted into its interplanetary trajectory at the correct time so it will arrive at the Martian orbit when Mars will be there. This task might be compared to throwing a dart at a moving target. You have to lead the aim point by just the right amount to hit the target. The opportunity to launch a spacecraft on a transfer orbit to Mars occurs about every 25 months. To be captured into a Martian orbit, the spacecraft must then decelerate relative to Mars using a retrograde rocket burn or some other means. To land on Mars, the spacecraft must decelerate even further using a retrograde burn to the extent that the lowest point of its Martian orbit will intercept the surface of Mars. Since Mars has an atmosphere, final deceleration may also be performed by aerodynamic braking direct from the interplanetary trajectory, and/or a parachute, and/or further retrograde burns. #### **Inward Bound** To launch a spacecraft from Earth to an inner planet such as Venus using least propellant, its existing solar orbit (as it sits on the launch pad) must be adjusted so that it will take it to Venus. In other words, the spacecraft's aphelion is already the distance of Earth's orbit, and the perihelion will be on the orbit of Venus. This time, the task is to <u>decrease the periapsis</u> (perihelion) of the spacecraft's present solar orbit. Recall from Chapter 3... A spacecraft's periapsis altitude can be lowered by decreasing the spacecraft's energy at apoapsis. To achieve this, the spacecraft lifts off of the launch pad, rises above Earth's atmosphere, and uses its rocket to accelerate opposite the direction of Earth's revolution around the sun, thereby <u>decreasing its orbital energy</u> while here at apoapsis (aphelion) to the extent that its new orbit will have a perihelion equal to the distance of Venus's orbit. Of course the spacecraft will continue going in the same direction as Earth orbits the sun, but a little slower now. To get to Venus, rather than just to its orbit, again requires that the spacecraft be inserted into its interplanetary trajectory at the correct time so it will arrive at the Venusian orbit when Venus is there. Venus launch opportunities occur about every 19 months. # TRANSFER ORBIT PERIHELION COINCIDES WITH VENUS ORBIT TRANSFER ORBIT ROCKET LEAVES EARTH AT TRANSFER ORBIT APHELION Earth to Venus via Least Energy Orbit #### Type I and II Trajectories If the interplanetary trajectory carries the spacecraft less than 180 degrees around the sun, it's called a Type-I Trajectory. If the trajectory carries it 180 degrees or more around the sun, it's called a Type-II. #### **Gravity Assist Trajectories** Chapter 1 pointed out that the planets retain most of the solar system's angular momentum. This momentum can be tapped to accelerate spacecraft on so-called "gravity-assist" trajectories. It is commonly stated in the news media that spacecraft such as Voyager, Galileo, and Cassini use a planet's gravity during a flyby to slingshot it farther into space. How does this work? By using gravity to tap into the planet's tremendous angular momentum. In a gravity-assist trajectory, angular momentum is transferred from the orbiting planet to a spacecraft approaching from behind the planet in its progress about the sun. Consider Voyager 2, which toured the Jovian planets. The spacecraft was launched on a Type-II Hohmann transfer orbit to Jupiter. Had Jupiter not been there at the time of the spacecraft's arrival, the spacecraft would have fallen back toward the sun, and would have remained in elliptical orbit as long as no other forces acted upon it. Perihelion would have been at 1 AU, and aphelion at Jupiter's distance of about 5 AU. However, Voyager's arrival at Jupiter was carefully timed so that it would pass behind Jupiter in its orbit around the sun. As the spacecraft came into Jupiter's gravitational influence, it fell toward Jupiter, increasing its speed toward maximum at closest approach to Jupiter. Since all masses in the universe attract each other, Jupiter sped up the spacecraft substantially, <u>and the spacecraft tugged on Jupiter</u>, causing the massive planet to actually lose some of its orbital energy. The spacecraft passed on by Jupiter since Voyager's speed was greater than Jupiter's escape velocity, and of course it slowed down again relative to Jupiter as it climbed out of the huge gravitational field. Its Jupiter-relative velocity outbound dropped to same as its velocity inbound. But relative to the sun, it never slowed all the way to its initial Jupiter approach speed. It left the Jovian environs carrying an increase in angular momentum stolen from Jupiter. Jupiter's gravity served to connect the spacecraft with the planet's ample reserve of angular momentum. This technique was repeated at Saturn and Uranus. #### **Voyager 2 Gravity Assist Velocity Changes** Voyager 2 leaves Earth at about 36 km/s relative to the sun. Climbing out, it loses much of the initial velocity the launch vehicle provided. Nearing Jupiter, its speed is increased by the planet's gravity, and the spacecraft's velocity exceeds solar system escape velocity. Voyager departs Jupiter with more sun-relative velocity than it had on arrival. The same is seen at Saturn and Uranus. The Neptune flyby design put Voyager close by Neptune's moon Triton rather than attain more speed. The same can be said of a baseball's acceleration when hit by a bat: angular momentum is transferred from the bat to the slower-moving ball. The bat is slowed down in its "orbit" about the batter, accelerating the ball greatly. The bat connects to the ball not with the force of gravity from behind as was the case with a spacecraft, but with direct mechanical force (electrical force, on the molecular scale, if you prefer) at the front of the bat in its travel about the batter, translating angular momentum from the bat into a high velocity for the ball. (Of course in the analogy a planet has an attractive force and the bat has a repulsive force, thus Voyager must approach Jupiter from a direction opposite Jupiter's trajectory and the ball approaches the bat from the direction of the bats trajectory.) The vector diagram on the left shows the spacecraft's speed relative to Jupiter during a gravity-assist flyby. The spacecraft slows to the same velocity going away that it had coming in, relative to Jupiter, although its direction has changed. Note also the temporary increase in speed nearing closest approach. When the same situation is viewed as sun-relative in the diagram below and to the right, we see that Jupiter's sun-relative
orbital velocity is added to the spacecraft's velocity, and the spacecraft does not lose this component on its way out. Instead, the planet itself loses the energy. The massive planet's loss is too small to be measured, but the tiny spacecraft's gain can be very great. Imagine a gnat flying into the path of a speeding freight train. Gravity assists can be also used to decelerate a spacecraft, by flying in front of a body in its orbit, donating some of the spacecraft's angular momentum to the body. When the Galileo spacecraft arrived at Jupiter, passing close in front of Jupiter's moon Io in its orbit, Galileo experienced deceleration, helping it achieve Jupiter orbit insertion and saving propellant. The gravity assist technique was championed by Michael Minovitch in the early 1960s, while he was a UCLA graduate student working during the summers at JPL. Prior to the adoption of the gravity assist technique, it was believed that travel to the outer solar system would only be possible by developing extremely powerful launch vehicles using nuclear reactors to create tremendous thrust, and basically flying larger and larger Hohmann transfers. An interesting fact to consider is that even though a spacecraft may double its speed as the result of a gravity assist, it feels no acceleration at all. If you were aboard Voyager 2 when it more than doubled its speed with gravity assists in the outer solar system, you would feel only a continuous sense of falling. No acceleration. This is due to the balanced tradeoff of angular momentum brokered by the planet's -- and the spacecraft's -- gravitation. #### **Enter the Ion Engine** All of the above discussion of interplanetary trajectories is based on the use of today's system of chemical rockets, in which a launch vehicle provides nearly all of the spacecraft's propulsive energy. A few times a year the spacecraft may fire short bursts from its chemical rocket thrusters for small adjustments in trajectory. Otherwise, the spacecraft is in free-fall, coasting all the way to its destination. Gravity assists may also provide short periods wherein the spacecraft's trajectory undergoes a change. But ion electric propulsion, as demonstrated in interplanetary flight by Deep Sapce 1, works differently. Instead of short bursts of relatively powerful thrust, electric propulsion uses a more gentle thrust continuously over periods of months or even years. It offers a gain in efficiency of an order of magnitude over chemical propulsion for those missions of long enough duration to use the technology. Ion engines are discussed further under Propulsion in Chapter 11. Click the image for more information about Deep Space 1. Even ion-electric propelled spacecraft need to launch using chemical rockets, but because of their efficiency they can be less massive, and require less powerful (and less expensive) launch vehicles. Initially, then, the trajectory of an ion-propelled craft may look like the Hohmann transfer orbit. But over long periods of continuously operating an electric engine, the trajectory will no longer be a purely ballistic arc. | SECTION I | |--------------------| | ENVIRONMENT | 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories **5** Planetary Orbits 6 Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments **13** Navigation #### **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network #### **How Orbits Work** #### 4.01 To send a spacecraft from Earth to the orbit of Venus... Remove energy from its existing solar orbit. Add energy to its existing solar orbit. Place it in solar orbit. Change its aphelion. #### 4.02 A Hohmann transfer orbit... is always a Type-II orbit. always uses gravity assist. is always a Type-I orbit. permits efficient use of propellant. #### 4.03 During a gravity assist boost, the spacecraft... departs the planet faster than it arrives, as seen from the planet. must fly slower than the planet's escape velocity. tugs on the planet via gravity. changes the planet's orbital energy. #### **SKIP ANSWER CHECK** | HOME GUIDE IND | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |--|--|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | 4 Trajectories | 10 Telecommunications | 17 Extended Operations | | <u>5 Planetary Orbits</u> | 11 Onboard Systems | 18 Deep Space Network | | <u>6</u> Electromagnetics | 12 Science Instruments | | | | 13 Navigation | | #### **Objectives:** Upon completion of this chapter you will be able to describe in general terms the characteristics of various types of planetary orbits. You will be able to describe the general concepts and advantages of geosynchronous orbits, polar orbits, walking orbits, sun-synchronous orbits, and some requirements for achieving them. #### **Orbital Parameters and Elements** The terms orbit period, periapsis, and apoapsis were introduced in Chapter 3. The direction a spacecraft or other body travels in orbit can be direct, or <u>prograde</u>, in which the spacecraft moves in the same direction as the planet rotates, or <u>retrograde</u>, going in a direction opposite the planet's rotation. <u>True anomaly</u> is a term used to describe the locations of various points in an orbit. It is the angular distance of a point in an orbit past the point of periapsis, measured in degrees. For example, a spacecraft might cross a planet's equator at 10° true anomaly. <u>Nodes</u> are points where an orbit crosses a plane. As an orbiting body crosses the ecliptic plane going north, the node is referred to as the <u>ascending node</u>; going south, it is the descending node. To completely describe an orbit mathematically, six quantities must be calculated. These quantities are called orbital elements, or Keplerian elements. They are: 1. Semi-major axis and - 2. <u>Eccentricity</u>, which together are the basic measurements of the size and shape of the orbit's ellipse (described in Chapter 3. Recall an eccentricity of zero indicates a circular orbit). - 3. <u>Inclination</u> is the angular distance of the orbital plane from the plane of the planet's equator (or from the ecliptic plane, if you're talking about heliocentric orbits), stated in degrees. An inclination of 0 degreesmeans the spacecraft orbits the planet at its equator, and in the same direction as the planet rotates. An inclination of 90 degrees indicates a polar orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination of 180 degrees indicates a retrograde equatorial orbit. - 4. <u>Argument of periapsis</u> is the argument (angular distance) of the periapsis from the ascending node. - 5. Time of periapsis passage and - 6. Celestial longitude of the ascending node are the remaining elements. The orbital period is of interest to operations, although it is not one of the six Keplerian elements needed to define the orbit. Generally, three astronomical or radiometric observations of an object in an orbit are enough to pin down all of the above six Keplerian elements. The following table gives a sense of the level of precision an interplanetary mission commonly deals with. These elements are measured during routine tracking by the Deep Space Network. #### Elements of Magellan's Initial Venus Orbit 10 August 1990 | 1. | Semimajor Axis: | 10434.162 km | |----|------------------------------|-------------------| | 2. | Eccentricity: | 0.2918967 | | 3. | Inclination: | 85.69613° | | 4. | Argument of Periapsis: | 170.10651° | | 5. | Periapsis Passage: | DOY 222 19:54 ERT | | 6. | Longitude of Ascending Node: | -61.41017° | | | Orbital Period: | 3.26375 hr | #### **Types of Orbits** #### **Geosynchronous Orbits** A geosychronous orbit (GEO) is a prograde, circular, low inclination orbit about Earth having a period of 23 hours 56 minutes 4 seconds. A spacecraft in geosynchronous orbit appears to remain above Earth at a constant longitude, although it may seem to wander north and south. #### **Geostationary Orbits** To achieve a geostationary orbit, a geosychronous orbit is chosen with an inclination of either zero, right on the equator, or else low enough that the spacecraft can use propulsive means to constrain the spacecraft's apparent position so it hangs motionless above a point on Earth. (Any such maneuvering on orbit is a process called <u>station keeping</u>.) The orbit can then be called geostationary. This orbit is ideal for certain kinds of communication satellites or meteorological satellites. START / STOP ANIMATION #### A Little GTO To attain geosynchronous (and also geostationary) Earth orbits, a spacecraft is first launched into an elliptical orbit with an apoapsis altitude in the neighborhood of 37,000 km. This is called a <u>Geosynchronous Transfer Orbit</u> (GTO). The spacecraft then circularizes the orbit by turning parallel to the equator at apoapsis and firing its rocket engine. That engine is usually called an <u>apogee motor</u>. It is common to compare various <u>launch vehicles' capabilities</u> according to the amount of mass they can lift to GTO. #### **Polar Orbits** Polar orbits are 90 degree inclination orbits, useful for spacecraft that carry out mapping or surveillance operations. Since the orbital plane is nominally fixed in inertial space, the planet rotates below a polar orbit, allowing the spacecraft low-altitude access to virtually every point on the surface. The Magellan spacecraft used a
nearly-polar orbit at Venus. Each periapsis pass, a swath of mapping data was taken, and the planet rotated so that swaths from consecutive orbits were adjacent to each other. When the planet rotated once, all 360 degrees longitude had been exposed to Magellan's surveillance. To achieve a polar orbit at Earth requires more energy, thus more propellant, than does a direct orbit of low inclination. To achieve the latter, launch is normally accomplished near the equator, where the rotational speed of the surface contributes a significant part of the final speed required for orbit. A polar orbit will not be able to take advantage of the "free ride" provided by Earth's rotation, and thus the launch vehicle must provide all of the energy for attaining orbital speed. #### **Walking Orbits** Planets are not perfectly spherical, and they do not have evenly distributed surface mass. Also, they do not exist in a gravity "vacuum." Other bodies such as the sun, or natural satellites, contribute their gravitational influences to a spacecraft in orbit about a planet. It is possible to choose the parameters of a spacecraft's orbit to take advantage of some or all of these gravitational influences to induce precession, which causes a useful motion of the orbital plane. The result is called a walking orbit or a precessing orbit, since the orbital plane moves slowly with respect to fixed inertial space. #### **Sun Synchronous Orbits** A walking orbit whose parameters are chosen such that the orbital plane precesses with nearly the same period as the planet's solar orbit period is called a sun synchronous orbit. In such an orbit, the spacecraft crosses periapsis at about the same local time every orbit. This can be useful if instruments on board depend on a certain angle of solar illumination on the surface. Mars Global Surveyor's orbit is a 2-pm Mars Local Time sun-synchronous orbit, chosen to permit well-placed shadows for best viewing. This remarkable image of a Martian aquifer was obtained by the Mars Global Surveyor spacecraft from its sun-synchronous Martian orbit in January 2000. The view is to the north. Click the image for more details. #### Lagrange points Joseph Louis Lagrange (1736-1813) showed that three bodies can occupy positions at the apexes of an equilateral triangle that rotates in its plane. Consider a system with two large bodies being the Earth orbiting the sun (or the Moon orbiting the Earth). The third body, such as a spacecraft or an asteroid, might occupy any of five <u>Lagrange</u> <u>points</u>: In line with the two large bodies are the L1, L2 and L3 points. The leading apex of the triangle is L4; the trailing apex is L5. These last two are also called <u>Trojan points</u>. Image from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) showing a series of troughs and layered mesas in the Gorgonum Chaos region of the Martian southern hemisphere. Gullies proposed to have been formed by seeping ground water emanate from a specific layer near the tops of trough walls, particularly on south-facing slopes (south is toward the bottom of each picture). The presence of so many gullies associated with the same layer in each mesa suggests that this layer is particularly effective in storing and conducting water. Such a layer is called an aquifer, and this one appears to be present less than a few hundred meters beneath the surface in this region. The MOC picture was taken on January 22, 2000. Sunlight illuminates the scene from the upper left. The image is located near 37.5°S, 170.5°W. The height of this image section spans about one km. MOC high resolution images are taken black-and-white (grayscale); the color seen here has been synthesized from the colors of Mars observed by the MOC wide angle cameras and by the Viking Orbiters in the late 1970s. Image courtesy NASA/JPL/Malin Space Science Systems. Image contrast and brightness increased by author. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS #### **SECTION I** **ENVIRONMENT** - 1 The Solar System - **2** Reference Systems - 3 Gravity & Mechanics - 4 Trajectories - **5** Planetary Orbits - **6** Electromagnetics #### **SECTION II** **FLIGHT PROJECTS** - 7 Mission Inception - **8** Experiments - 9 S/C Classification - 10 Telecommunications - 11 Onboard Systems - **12** Science Instruments - 13 Navigation #### **SECTION III** FLIGHT OPERATIONS - 14 Launch - 15 Cruise - **16** Encounter - **17** Extended Operations - 18 Deep Space Network #### 5.01 The ascending node is where... 90° true anomaly always occurs. an orbiting body crosses the planet's equator going north. 180° true anomaly always occurs. an orbiting body crosses the ecliptic plane going north. #### 5.02 A geostationary orbit is... retrograde. geosychronous. prograde. high inclination. #### 5.03 A sun-synchronous orbit is... always a polar orbit. always a walking orbit. never a precessing orbit. convenient for many science observations. SKIP ANSWER CHECK | HOME GUIDE IND | <u> DEX GLOSSARY UNITS</u> | S OF MEASURE LINKS | |---|--|---| | SECTION I ENVIRONMENT 1 The Solar System | SECTION II FLIGHT PROJECTS 7 Mission Inception | SECTION III FLIGHT OPERATIONS 14 Launch | | 2 Reference Systems | 8 Experiments | 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | <u>4 Trajectories</u> | 10 Telecommunications | 17 Extended Operations | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | <u>6 Electromagnetics</u> | 12 Science Instruments | | | | 13 Navigation | | ## Chapter 6. pace Flight Electromagnetic **Phenomena** #### **Objectives:** Upon completion of this chapter you will be able to describe in general terms characteristics of natural and artificial emitters of radiation. You will be able to describe bands of the spectrum from RF to gamma rays, and the particular usefulness radio frequencies have for deep-space communication. You will be able to describe the basic principles of spectroscopy, Doppler effect, reflection and refraction. #### **Electromagnetic Radiation** Electromagnetic radiation (radio waves, light, etc.) consists of interacting, self-sustaining electric and magnetic fields that propagate through empty space at the speed of 299,792 km per second, and slightly slower through air and other media. Thermonuclear reactions in the cores of stars (including the sun) provide the energy that eventually leaves stars, primarily in the form of electromagnetic radiation. These waves cover a wide spectrum of frequencies. Sunshine is a familiar example of electromagnetic radiation that is naturally emitted by the sun. Starlight is the same thing from "suns" much farther away. When a direct current (DC) of electricity, for example from a flashlight battery, is applied to a wire or other conductor, the current flow builds an electromagnetic field around the wire, propagating a wave outward. When the current is removed the field collapses, again propagating a wave. If the current is applied and removed repeatedly over a period of time, or if the electrical current is made to alternate its polarity with a uniform period of time, a series of waves is propagated at a discrete frequency. This phenomenon is the basis of electromagnetic radiation. Electromagnetic radiation normally propagates in straight lines at the speed of light and does not require a medium for transmission. It slows as it passes through a medium such as air, water, glass, etc. #### The Inverse Square Law Electromagnetic energy decreases as if it were dispersed over the area on an expanding sphere, expressed as $4\pi R^2$ where radius R is the distance the energy has travelled. The amount of energy received at a point on that sphere diminishes as $1/R^2$. This relationship is known as the inverse-square law of (electromagnetic) propagation. It Image of M45, The Pleiades star cluster, by kind permission of <u>Graham Pattison</u> who acquired the image and provided the following information: The Pleiades cluster has fasinated people for centeries. It's estimated more photographs have been taken of the Pleiades than any other stellar object. It's common name the seven sisters, expressed the approximate number of visible naked eye stars. Through a telescope several hundred objects lie within 1 degree of the brightess 2.9 magnitute Alcyone (lower left bright star). It is faily easy for amateurs to photograph traces of the whispy nebulosity within the cluster. Because of its low surface brightness the nebulosity is hard to observe visually. The cluster in low powered 7x50 binoculars is one of the finest sights in the heavens. In larger telescopes the Pleiades is disappointing since only part can be observed. Image acquired UT 11:47 Sept 2 1994 using a ST-6 CCD camera with specially built filter wheel, imaged for 60sec in red, 90 sec in green and 2x120sec images in blue. Combined together with Photoshop to form this tri color image. Optics: a Televue Genesis 4" f5.4 scope mounted on a Losmandy GM8 GEM. Photo copyright © 1996 Graham G. Pattison accounts for loss of signal strength over space, called space loss. The inverse-square law is significant to the exploration of the universe, because it means that the concentration of electromagnetic radiation decreases very rapidly with increasing distance from the emitter. Whether the emitter is a distant spacecraft with a low-power transmitter or an extremely powerful star, it will deliver only a small amount of electromagnetic energy to a detector on Earth because of the very great distances and the small area that Earth subtends on the huge imaginary sphere. #### PRECEDING PAGE | NEXT PAGE | HOLE | CHIPE | l mineri | GI OGG I DIV | LINUTES OF MEASURE | I | |-------------|-------|--------------|-----------------|-------------------------|-------| | <u>HOME</u> | GUIDE | <u>INDEX</u> | <u>GLOSSARY</u> | <u>UNITS
OF MEASURE</u> | LINKS | #### **SECTION I** **ENVIRONMENT** - 1 The Solar System - **2** Reference Systems - 3 Gravity & Mechanics - **4** Trajectories - **5** Planetary Orbits - **6** Electromagnetics #### **SECTION II** FLIGHT PROJECTS - 7 Mission Inception - **8** Experiments - 9 S/C Classification - **10** Telecommunications - 11 Onboard Systems - **12** Science Instruments - **13** Navigation #### **SECTION III** FLIGHT OPERATIONS - 14 Launch - 15 Cruise - **16** Encounter - **17** Extended Operations - **18** Deep Space Network #### **Electromagnetic Spectrum** Light is electromagnetic radiation at those frequencies that can be sensed by the human eye. The electromagnetic spectrum, though, has a much broader range of frequencies than the human eye can detect, including, in order of increasing frequency: <u>audio frequency (AF)</u>, <u>radio frequency (RF)</u>, <u>infrared (meaning "below red," IR)</u>, <a href="<u>visible light"><u>visible light</u>, <a href="<u>ultraviolet (meaning "above violet," UV)</u>, <a href="<u>X-rays">X-rays</u>, and finally <a href="<u>gamma rays"</u>. These designations describe only different frequencies of the same phenomenon: electromagnetic radiation.</u> All electromagnetic waves propagate at the speed of light. The <u>wavelength</u> of a single oscillation of electromagnetic radiation means the <u>distance</u> the wave will propagate during the time required for one oscillation. The strength, or "loudness" of the wave is known as its <u>amplitude</u> and is expressed in decibels (dB). Frequency is expressed in Hertz (Hz), which represents cycles per second. There is a simple relationship between the frequency of oscillation and wavelength of electromagnetic energy. Wavelength, represented by the Greek lower case lambda (λ), is equal to the speed of light (c) divided by frequency (f). $$\lambda = c / f$$ and $$f = c / \lambda$$ #### **Waves or Particles?** Electromagnetic energy can be viewed in physics as if it were waves, as described above, and also as particles, known <u>photons</u>. It is generally common to speak of waves when talking about lower frequencies and longer wavelengths, such as radio waves. Reference to photons is common for physicists talking about light and higher frequencies. Waves are described in terms of frequency, wavelength, and amplitude, while photons, carriers of the electromagnetic forece, are described in terms of energy level using the electron Volt (eV). Throughout this document the preferred treatment will be waves, which is arguably a more informative approach. #### **Natural and Artificial Emitters** Deep space communication antennas and receivers are capable of detecting many different kinds of natural emitters of electromagnetic radiation, including the stars, the sun, molecular clouds, and gas giant planets such as Jupiter. These sources do not emit at truly random frequencies, but without sophisticated scientific investigation and research, their signals appear as noise -- that is, signals of pseudo-random frequencies and amplitude. Radio astronomy is the scientific discipline which investigates natural emitters by acquiring and studiying their electromagnetic radiation. The Deep Space Network participates in radio astronomy experiments. Radio Telescope Image of Jupiter Click image for details. Deep space vehicles are equipped with radio transmitters ("artificial emitters") and receivers for sending and receiving signals (electromagnetic radiation) to and from Earth-based tracking stations. These signals utilize pre-established discrete frequencies. On the other hand, various natural and human-made emitters combine to create a background of electromagnetic noise from which the spacecraft signals must be detected. The ratio of the signal level to the noise level is known as the signal-to-noise ratio (SNR). #### PRECEDING PAGE | | HOME GUII | DE INDEX GLOSSARY | UNITS OF MEASURE LINKS | |--------------------|--------------------------------|--------------------------| | SECTION I | SECTION II | SECTION III | | ENVIRONMENT | FLIGHT PROJECTS | FLIGHT OPERATIONS | | 1 The Solar Sys | tem <u>7 Mission Inception</u> | on 14 Launch | | 2 Reference Sys | stems 8 Experiments | 15 Cruise | 3 Gravity & Mechanics S/C Classification Trajectories Telecommunications **5** Planetary Orbits 11 Onboard Systems **6** Electromagnetics **12** Science Instruments **13** Navigation 16 Encounter **17** Extended Operations 18 Deep Space Network #### 6.01 An electromagnetic wave is propagated when a magnetic field is... created. deactivated. reversed. steady. #### 6.02 Which of the following are forms of electromagnetic radiation? mechanical movement. radio. light. gamma rays. #### 6.03 The higher the frequency of an electromagnetic wave... the faster it propagates. the longer its wavelength. the shorter its wavelength. the greater the noise. #### 6.04 The strength of electromagnetic radiation decreases as the... inverse of distance. square of distance. cube of distance. square of frequency. # 6.05 True or false? It is valid to describe electromagnetic radiation in terms of either particles or waves. True False #### **SKIP ANSWER CHECK** | HOME GUIDE INI | DEX GLOSSARY U | UNITS OF MEASURE LINKS | |--|--|--| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | 4 Trajectories 5 Planetary Orbits | 10 Telecommunication 11 Onboard Systems | 18 Deep Space Network | | 6 Electromagnetics | 12 Science Instrumer 13 Navigation | <u>nts</u> | #### **Radio Frequencies** Abbreviations such as kHz and GHz are all listed in the Glossary and are also treated under Units of Measure (see the menu bar below). Electromagnetic radiation with frequencies between about 10 kHz and 100 GHz are referred to as radio frequencies (RF). Radio frequencies are divided into groups that have similar characteristics, called "bands," such as "S-band," "X-band," etc. The bands are further divided into small ranges of frequencies called "channels," some of which are allocated for the use of deep space telecommunications. Many deep-space vehicles use channels in the S-band and X-band range which are in the neighborhood of 2 to 10 GHz. These frequencies are among those referred to as microwaves, because their wavelength is short, on the order of centimeters. Deep space telecommunications systems are being developed for use on the even higher frequency K-band. This table lists some RF band definitions for illustration. Band definitions may vary slightly among different sources and according to various users. These are ballpark values. | Band | Range of
Wavelengths (cm) | Frequency | |------|------------------------------|----------------| | UHF | 10 - 20 | 300 - 3000 MHz | | L | 30 - 15 | 1 - 2 GHz | | S | 15 - 7.5 | 2 - 4 GHz | | C | 7.5 - 3.75 | 4 - 8 GHz | | X | 3.75 - 2.4 | 8 - 12 GHz | | K | 2.4 - 0.75 | 12 - 40 GHz | Within K-band, spacecraft may operate communications, radio science, or radar equipment at Ku-band in the neighborhood of 15 to 17 GHz and Ka-band around 20 to 30 GHz. ## **The Whole Spectrum** Bring up this page to study a table of the entire electromagnetic spectrum. The table shows frequency and wavelength, common names such as "light" and "gamma rays," size examples, and any attenuation effects in Earth's environment as discussed below. ## **Atmospheric Transparency** Because of the absorption phenomena, observations are impossible at certain wavelengths from the surface of Earth, since they are absorbed by the Earth's atmosphere. There are a few "windows" in its absorption characteristics that make it possible to see visible light and receive radio frequencies, for example, but the atmosphere presents an opaque barrier to much of the electromagnetic spectrum. Even though the atmosphere is transparent at X-band frequencies, there is a problem when liquid or solid water is present. Water exhibits noise at X-band frequencies, so precipitation at a receiving site increases the system noise temperature, and this can drive the SNR too low to permit communications reception. ## **Radio Frequency Interference** In addition to the natural interference that comes from water at X-band, there may be other sources of noise, such as man-made radio interference. Welding operations on an antenna produce a wide spectrum of radio noise. Many Earth-orbiting spacecraft have strong downlinks near the frequency of signals from deep space. Goldstone Solar System Radar (described further in this chapter) uses a powerful transmitter, which can interfere with reception at a nearby station. Whatever the source of radio frequency interference (RFI), its effect is to increase the noise, thereby decreasing the SNR and making it more difficult, or impossible, to receive valid data from a deep-space craft. ## **Spectroscopy** The study of the production, measurement, and interpretation of electromagnetic spectra is known as spectroscopy. This branch of science pertains to space exploration in many different ways. It can provide such diverse information as the chemical composition of an object, the speed of an object's travel, its temperature, and more -- information that cannot be gleaned from photographs or other means. For purposes of introduction, imagine sunlight passing through a glass prism, creating a rainbow, called the spectrum. Each band of color visible in this spectrum is actually composed of a very large number of individual wavelengths of light which cannot be individually discerned by the human eye, but which
are detectable by sensitive instruments such as spectrometers and spectrographs. Suppose instead of green all you find is a dark "line" where green should be. You might assume something had absorbed all the "green" wavelengths out of the incoming light. You would be correct. By studying the brightness of individual wavelengths from a natural source, and comparing them to the results of laboratory experiments, many substances can be identified that lie in the path from the light source to the observer. Dark absorption lines in the sun's spectrum and that of other stars are called Fraunhofer lines after Joseph Fraunhofer who observed them in 1817. The image below shows a segment of the solar spectrum, in which many such lines can be seen. The prominent line above the arrow results from hydrogen in the sun's atmosphere absorbing energy at a wavelength of 6563 Angstroms. This is called the hydrogen alpha line. On the other hand, bright lines in a spectrum (not illustrated here) represent a particularly strong emission of radiation produced by the source at a particular wavelength. Spectroscopy is not limited to the band of visible light, but is commonly applied to infrared, ultraviolet, and many other parts of the <u>whole spectrum</u> of electromagnetic energy. In 1859, Gustav Kirchhoff (1824-1887) described three laws of spectral analysis: - 1. A luminous (glowing) solid or liquid emits light of all wavelengths (white light), thus producing a continuous spectrum. - 2. A rarefied luminous gas emits light whose spectrum shows bright lines (indicating light at specific wavelengths), and sometimes a faint superimposed continuous spectrum. - 3. If the white light from a luminous source is passed through a gas, the gas may absorb certain wavelengths from the continuous spectrum so that those wavelengths will be missing or diminished in its spectrum, thus producing dark lines. By studying emission and absorption features in the spectra of stars, in the spectra of sunlight reflected off the surfaces of planets, rings, and satellites, and in the spectra of starlight passing through planetary atmospheres, much can be learned about these bodies. This is why spectral instruments are flown on spacecraft. Historically, spectral observations have taken the form of photographic prints showing spectral bands with light and dark lines. Modern instruments (discussed again under Chapter 12) produce their high-resolution results in the form of X-Y graphic plots, whose peaks and valleys reveal intensity (brightness) on the vertical axis versus wavelength along the horizontal. Peaks of high intensity on such a plot represent bright spectral lines (not seen in this illustration), and troughs of low intensity represent the dark lines. This plot, reproduced courtesy of the <u>Institut National des Sciences de l'Univers</u> / <u>Observatoire de Paris</u>, shows details surrounding the dip in brightness centered at the hydrogen-alpha line of 6563 Å which is indicated by the dark line above the red arrow in the spectral image above. The whole plot spans 25 Å of wavelength horizontally. Click the image for a larger view. | 4 | | | | D. | |---|----------------|---|------------------|----| | | PRECEDING PAGE | Ι | NEXT PAGE | | | | | ' | | | | | | | | i | | |-------------|--------------|-------|----------|------------------|-------| | HOME | <u>GUIDE</u> | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS | #### **SECTION I** ENVIRONMENT 1 The Solar System <u>**2** Reference Systems</u> 3 Gravity & Mechanics **4** Trajectories 5 Planetary Orbits 6 Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification **10** Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation #### **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter 17 Extended Operations 18 Deep Space Network # Characteristics of Electromagnetic Energy # Based roughly on order of magnitude | Band | Frequency | Wavelength | Example | Attenuation | |-----------------------------------|---|--|---------------------------|---| | | | 100 km
100x10 ³ m | Los Angeles | | | Long-wave radio | 30 kHz 30x10 ³ Hz | | Pasadena | Ionosphere opaque | | AM radio | 300 kHz
300x10 ³ Hz | | JPL | Ionosphere opaque | | Short-wave radio | 3 MHz
3x10 ⁶ Hz | 100 m | Football field | Ionosphere opaque | | VHF radio (FM),
TV | 30 MHz 30x10 ⁶ Hz | 10 m | | Ionosphere opaque | | UHF radio, TV | 300 MHz
300x10 ⁶ Hz | 1 m | Human child | | | Microwave radio | | 100 mm
100x10 ⁻³ m | | | | Microwave radio | 30 GHz 30x10 ⁹ Hz | 10 mm
10x10 ⁻³ m | | Atmosphere opaque except some wavelengths | | | 300 GHz 300x10 ⁹ Hz | | Grain of sand | Atmosphere opaque | | | 3 THz 3x10 ¹² Hz | 100 μ
100x10 ⁻⁶ m | | Atmosphere opaque except some wavelengths | | Infrared light | 30 THz 30x10 ¹² Hz | | Bacterium | Atmosphere opaque except some wavelengths | | 3,000 - 10,000 Å
Visible light | 300 THz 300x10 ¹² Hz | | DED 564 | Atmosphere opaque except some wavelengths | | Ultraviolet light | 3 PHz 3x10 ¹⁵ Hz | 100 nm
100x10 ⁻⁹ m
1,000 Å | RED = 564nm BLUE = 420nm | Visible light window | | | 30 PHz 30x10 ¹⁵ Hz | | Virus | Atmosphere opaque | | | 300 PHz
300x10 ¹⁵ Hz | | | Atmosphere opaque | | | | 100 pm
100x10 ⁻¹² m | Atom | Atmosphere opaque | | X-rays | 30 EHz 30x10 ¹⁸ Hz | | | Atmosphere opaque | |------------|--|--|----------------|-------------------| | | 300 EHz 300x10 ¹⁸ Hz | - | | Atmosphere opaque | | Gamma rays | | 100 fm
100x10 ⁻¹⁵ m | | Atmosphere opaque | | | ZHz 30x10 ²¹ Hz | 10 fm
10x10 ⁻¹⁵ m | | Atmosphere opaque | | | ZHz 300x10 ²¹ Hz | 1 fm 1x10 ⁻¹⁵ m | Atomic nucleus | Atmosphere opaque | | | | 100 am
100x10 ⁻¹⁸ m | | Atmosphere opaque | | | YHz 30x10 ²⁴ Hz | 10 am
10x10 ⁻¹⁸ m | | Atmosphere opaque | | | YHz 300x10 ²⁴ Hz | 1 am 1x10 ⁻¹⁸ m | | Atmosphere opaque | #### **Excerpts from Glossary**: THz=TeraHertz PHz=PetaHertz EHz=ExaHertz ZHz=ZettaHertz YHz=YottaHertz µ=micrometer, micron nm=nanometer pm=picometer fm-femtometer am=attometer Angstrom, \mathring{A} , is 0.1 nm. Angsrtoms have traditionally been used to describe wavelengths of light. The nanometer is generally preferred today. HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS #### 6.06 RFI, or Radio Frequency Interference, is responsible for... high-resolution imaging. reduction of SNR. increase in noise level. high-resolution spectroscopy. #### 6.07 The X-band is radiation of... long-wave radio frequency. X-ray wavelengths. unknown wavelength. microwave radio. #### 6.08 Gas surrounding a star may absorb energy, causing... absorption lines. an explosion. emission lines. indigestion. # 6.09 Spectrographic instruments on a spacecraft can obtain data regarding an observed body's... mass. composition. temperature. gravity. #### **SKIP ANSWER CHECK** | HOME GUIDE IND | <u>DEX GLOSSARY UNITS</u> | S OF MEASURE LINKS | |--|--|---| | SECTION I ENVIRONMENT 1 The Solar System | SECTION II FLIGHT PROJECTS 7 Mission Inception | SECTION III FLIGHT OPERATIONS 14 Launch | | 2 Reference Systems | 8 Experiments | 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | 4 Trajectories | 10 Telecommunications | 17 Extended Operations | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | 6 Electromagnetics | 12 Science Instruments | _ | | | 13 Navigation | | ## The Doppler Effect Regardless of the frequency of a source of electromagnetic waves, they are subject to the Doppler effect. The Doppler effect causes the observed frequency of a source to differ from the radiated frequency of the source if there is motion that is increasing or decreasing the distance between the source and the observer. The same effect is readily observable as variation in the pitch of sound between a moving source and a stationary observer, or vice-versa. 1. When the distance between the source and receiver of electromagnetic waves remains constant, the frequency of the source and received wave forms is the same. This is illustrated at right. The waveform at the top represents the source, and the one at the bottom represents the received signal. Since the source and the receiver are not moving toward or away from each other, the received signal appears the same as the source. CLICK IMAGE TO START / STOP ANIMATION - 2. When the distance between the source and receiver of electromagnetic waves is increasing, the frequency of the received wave forms appears to be lower than the actual frequency of the source wave form. Each time the source has completed a wave, it has also moved farther away from the receiver, so the waves arrive less frequently. - 3. When the distance is decreasing, the frequency of the received wave form will be higher than the source wave form. Since the source is getting closer, the waves arrive more frequently. Cases 2 and 3 are illustrated below. Notice that when the receiver is in motion toward or away from the source, the waveform at the receiver (the lower waveform) changes. It only changes, though, while there is actual motion toward or away; when it stops, the received waveform appears the same as the source. CLICK IMAGE TO START / STOP ANIMATION The Doppler effect is routinely observed in the frequency of the signals received by ground receiving stations when tracking spacecraft. The increasing or decreasing distances
between the spacecraft and the ground station may be caused by a combination of the spacecraft's trajectory, its orbit around a planet, Earth's revolution about the sun, and Earth's daily rotation on its axis. A spacecraft approaching Earth will add a positive frequency bias to the received signal. However, if it flies by Earth, the received Doppler bias will become zero as it passes Earth, and then become negative as the spacecraft moves away from Earth. A spacecraft's revolutions around another planet such as Mars adds alternating positive and negative frequency biases to the received signal, as the spacecraft first moves toward and then away from Earth. The Earth's rotation adds a positive frequency bias to the received signal as the spacecraft rises in the east at a particular tracking station, and it adds a negative frequency bias to the received signal as the spacecraft sets in the west. The Earth's revolution about the sun adds a positive frequency bias to the received signal during that portion of the year when the Earth is moving toward the spacecraft, and it adds a negative frequency bias during the part of the year when the Earth is moving away. ## **Differenced Doppler** If two widely-separated tracking stations on Earth observe a single spacecraft in orbit about another planet, they will each have a slightly different view of the moving spacecraft, and there will be a slight difference in the amount of Doppler shift observed by each station. For example, if one station has a view exactly edge-on to the spacecraft's orbital plane, the other station would have a view slightly to one side of that plane. Information can be extracted from the differencing of the two received signals. This data can be combined and interpreted to fully describe the spacecraft's arc through space in three dimensions, rather than just providing a single toward or away component. This data type, differenced Doppler, is a useful form of navigation data that can yield a very high degree of spatial resolution. It is further discussed in Chapter 13, Spacecraft Navigation. | 1 | 1 | |---|---| | | | | | | #### PRECEDING PAGE | NEXT PAGE | HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS | |------|-------|-------|----------|------------------|-------| | | | | | | | #### **SECTION I** **ENVIRONMENT** 1 The Solar System **2** Reference Systems Gravity & Mechanics 4 Trajectories **5** Planetary Orbits **6** Electromagnetics #### **SECTION II** **FLIGHT PROJECTS** **7** Mission Inception **8** Experiments 9 S/C Classification **10** Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation #### SECTION III **FLIGHT OPERATIONS** 14 Launch 15 Cruise 16 Encounter **17** Extended Operations **18** Deep Space Network ## Reflection Electromagnetic radiation travels through empty space in a straight line except when it is bent slightly by the gravitational field of a large mass in accordance with general relativity. RF waves can be reflected by certain substances, much in the same way that light is reflected by a mirror. As with light on a mirror, the angle at which RF is reflected from a smooth metal surface, for example, will equal the angle at which it approached the surface. In other words... The principle of RF reflection is used in designing antennas to focus incoming microwave radio energy from a large area down into a narrow beam, collecting and concentrating it into a receiver. If a reflector is shaped like a paraboloid, electromagnetic waves approaching on-axis (and only those) will reflect and focus at the feed horn. This arrangement, called prime focus, offers the large aperture necessary to receive very weak RF signals. It is also used in optical telescopes. But prime focus arrangements for large radio antennas place heavy prime-focus equipment far from the main reflector, so the supporting structure tends to sag under its own weight, affecting the system's ability to focus. It also exposes large structures to the wind. A solution is the Cassegrain focus arrangement. Cassegrain antennas add a secondary reflecting surface, called a subreflector, to "fold" the RF back to a focus near the primary reflector. All the DSN's antennas are of this design because it accommodates large apertures and is structurally strong, allowing heavy equipment to be located nearer the structure's center of gravity. More information on the design of DSN stations appears in Chapter 18. Many optical telescopes both large and small also use Cassegrain or similar systems. ## Planetary Radar Secondary Reflecting surface (hyperbolic section) Receiver Cassegrain Feed Horn Reflecting Surface (parabolic section) CLICK IMAGE TO START / STOP ANIMATION The reflective properties of RF electromagnetic waves have also been used to investigate the planets and their satellites using a technique called planetary radar astronomy. With this technique, electromagnetic waves are radiated from high-power transmitters in the DSN antennas and they reflect off the surface of the planet or satellite, to be received at one or more Earth stations. Using very sophisticated signal processing techniques, the receiving stations dissect and analyze the signal in terms of time, amplitude, phase, and frequency. JPL's application of this radar technique, called Goldstone Solar System Radar (GSSR), has been used to develop images of the surface features of Venus, eternally covered with clouds; Mercury, difficult to see visually in the glare of the sun; and satellites of the Jovian planets, including Saturn's large moon Titan whose surface is obscured from view by a thick hazy atmosphere. ## Reflection of X-rays At much shorter wavelength and higher energy than RF and light, X-rays do not reflect in the same manner. X-rays are mostly absorbed by a mirror which can reflect longer-wavelength energy, so a different approach is necessary to be able to focus them. Much like skipping a stone on the water by throwing it at a low angle to the surface, X-rays may be deflected by mirrors arranged at low incidence angles to the incoming energy. Mirrors in X-ray telescopes are arrangements of flat surfaces or concentric tubes arranged so that the incoming X-rays strike at glancing incidence and deflect toward a focal point in one or more stages. | 1 | PRECEDING PAGE | ı | NEXT PAGE | | |---|----------------|---|-----------|--| | | | ı | | | | | <u>LINKS</u> | |-----------------------------------|--------------| | SECTION I SECTION III SECTION III | | ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories <u>5</u> Planetary Orbits **6** Electromagnetics FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network ## Refraction Refraction is the deflection or bending of electromagnetic waves when they pass from one kind of transparent medium into another. The index of refraction of a material is the ratio of the speed of light in a vacuum to the speed of light in the material. The law of refraction states that electromagnetic waves passing from one medium into another of a differing index of refraction will be bent in their direction of travel. Air and glass have different indices of refraction. Therefore, the path of electromagnetic waves moving from air to glass at an angle will be bent toward the perpendicular as they travel into the glass. Likewise, the path will be bent to the same extent away from the perpendicular when they exit the other side of glass. Refraction is responsible for many useful devices which bend light in carefully determined ways, from eyeglasses to telescope lenses. Refraction also causes illusions. This pencil appears to be discontinuous at the boundary of air and water. Spacecraft may appear to be in different locations in the sky than they really are. Electromagnetic waves entering Earth's atmosphere from space are bent by refraction. Atmospheric refraction is greatest for signals near the horizon where they come in at the lowest angle, and the apparent altitude of the signal appears to be on the order of half a degree higher than its true height. As Earth rotates and the object gains altitude, the refraction effect reduces, becoming zero at the zenith (directly overhead). Refraction's effect on the sun adds about 5 minutes of time to the daylight at equatorial latitudes, since it appears higher in the sky than it actually is. ## **Refraction in Earth's Atmosphere** Angles exaggerated for clarity. If the signal from a spacecraft goes through the atmosphere of another planet, the signals leaving the spacecraft will be bent by the atmosphere of that planet. This bending will cause the apparent occultation, that is, the spacecraft moving into the planet's RF shadow of Earth, to occur later than otherwise expected, and to exit from occultation prior to when otherwise expected. Ground processing of the received signals reveals the extent of atmospheric bending, and also of absorption at specific frequencies and other modifications. It also provides a basis for inferring the composition and structure of a planet's atmosphere. #### **Phase** As applied to waves of electromagnetic radiation, phase is the relative measure of the alignment between two waveforms of similar frequency. They are said to be <u>in phase</u> if the peaks and troughs of the two waves match up with each other in time. They are said to be <u>out of phase</u> to the extent that they do not match up. Phase is expressed in degrees from 0 to 360. | S | ECTI | ON I | | |---|------|-------|---------------| | E | NVIR | RONMI | ENT | | 1 | The | Solar | <u>System</u> | | | | | | <u>2 Reference Systems</u>3 Gravity & Mechanics 4 Trajectories <u>**5** Planetary Orbits</u> **6** Electromagnetics **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9
S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network #### 6.10 Doppler effect can be noticed only... after all relative motion between source and receiver stops. during acceleration between the source and receiver. in sound waves. when distance between source and receiver is changing. #### 6.11 RF energy reflects off various surfaces... much the same as light does. at the same angle as it comes in. only at very low incidence angles. only in the absence of light. #### 6.12 The design of DSN antennas using a folded RF path is known as... Calibrated. Casseopia. Cassegrain. ## 6.13 Refraction makes a star that's low in the sky appear... lower. higher. larger. smaller. ## 6.14 When two incoming radio waves arrive at one antenna... they are said to be in phase with each other. they must be out of phase with each other. the sum of their phases always equals 180 degrees. they may or may not be in phase with each other. #### **SKIP ANSWER CHECK** | HOME GUIDE IND | DEX GLOSSARY UNIT | S OF MEASURE LINKS | |---------------------------|------------------------|-------------------------------| | SECTION I | SECTION II | SECTION III | | ENVIRONMENT | FLIGHT PROJECTS | FLIGHT OPERATIONS | | <u>1</u> The Solar System | 7 Mission Inception | 14 Launch | | 2 Reference Systems | <u>8</u> Experiments | 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | 4 Trajectories | 10 Telecommunications | 17 Extended Operations | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | 6 Electromagnetics | 12 Science Instruments | | | | 13 Navigation | | #### **Objectives:** Upon completion of this chapter you will be able to describe activities typical of the following mission phases: conceptual effort, preliminary analysis, definition, design, and development. You will be conversant with typical design considerations included in mission inception. In this discussion, we will consider science projects suitable for sponsorship by the U.S. National Aeronautics and Space Administration (NASA). While a large percentage of projects at JPL enjoy sponsorship by NASA, many JPL projects do have different sponsors. This discussion considers a hypothetical example, and it is effective in offering a valid basis for comparison to real-world projects. In reality though, there may be many deviations from this nominal process. There is no single avenue by which a mission must be initiated. An original concept for a mission to obtain scientific data may come from members of the science community who are interested in particular aspects of certain solar system bodies, or it may come from an individual or group, such as a navigation team, who know of a unique opportunity approaching from an astronomical viewpoint. As a project matures, the effort goes through different phases: - Pre-Phase A, Conceptual Study - Phase A, Preliminary Analysis - Phase B, Definition - Phase C/D, Design and Development - Operations Phase Formal reviews are used as control gates at critical points in the full system life cycle to determine whether the system development process should continue, or what modifications are required. ## **Conceptual Study** A person or group petitions NASA with an idea or plan. The proposal is studied and evaluated for merit, and, if accepted, the task of screening feasibility is delegated to a NASA Center. In the case of robotic deep space exploration, that center is frequently JPL. Prior to Phase A, the following activities typically take place: NASA Headquarters establishes a Science Working Group (SWG). The SWG develops the science goals and requirements, and prepares a preliminary scientific conception of the mission. Based on the high-level concept and the work of the SWG, a scientific document called the Announcement of Opportunity (AO) is sent out by NASA Headquarters to individual scientists at universities, NASA centers, and science organizations around the world. The AO defines the existing concept of the mission and the scientific opportunities, goals, requirements, and system concepts. The AO specifies a fixed amount of time for the scientific community to respond to the announcement. All proposals for new experiments are reviewed for science merit as related to the goal of the mission. Mass, power consumption, science return, safety, and ability to support the mission from the "home institution" are among key criteria. JPL develops a library of launch possibilities which becomes available to the project. Depending on the nature of the tasks at hand, they are delegated to various sections within JPL. Historically, a project gets its start when funding is made available to JPL's Mission Design Section. The Mission Design Section then tasks personnel from appropriate divisions or sections as needed. For example, the Spacecraft Systems Engineering Section for Spacecraft Design, the Navigation Systems Section for Navigation Design, and the Mission Execution and Automation Section for Mission Operations. Note that the names of JPL sections change over the years to accommodate the Laboratory's ever-evolving management structure. Usually the presentation of the study concept to NASA Headquarters by JPL personnel and NASA's approval to proceed to Phase A signify the end of Conceptual Study. #### **Full System Life Cycle** ## **Phase A: Preliminary Analysis** The Project creates a preliminary design and project plan as a <u>proof of concept</u> specifying what to build, when to launch, the course the spacecraft is to take, what is to be done during cruise, when the spacecraft will reach the target, and what operations will be carried out. The preliminary plan also addresses build-versus-buy decisions, what spacecraft instruments are needed, where system tests will be performed, who performs mission operations, what ground data system capabilities are required, and who the experimenters are. Generally speaking, publication of the preliminary plan with costing data marks the completion of Phase A: Preliminary Analysis. #### **Phase B: Definition** The definition phase converts the preliminary plan into a baseline technical solution. Requirements are defined, schedules are determined, and specifications are prepared to initiate system design and development. Major reviews commonly conducted as part of the definition phase are: System Requirements Review, System Design Review, and Non-Advocate Review. The proposed experiments are divided into two classes based on facilities and experimenters. The facilities form teams around a designated set of hardware. Facilities are selected based on existing resources and past performance. Experimenters were specified in the preliminary plan. However, individuals are encouraged to respond with modifications and to step forward with their own ideas. These ideas could include the addition of another experiment. A NASA peer group reviews all new proposals and "grades" them. After that, a sub-committee from NASA Headquarters' Office of Space Science and Applications (OSSA) Steering Committee (SC) makes the final experiment selection, based on scientific value, cost, management, engineering, and safety. Personnel teams are established to build and operate the instruments and evaluate the data returned. There is usually one team for each experiment, with one individual from that team chosen as the Team Leader (TL) and/or Principal Investigator (PI). In most cases, the Non-Advocate Review marks the end of Phase B: Definition. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS **SECTION I** **ENVIRONMENT** 1 The Solar System 2 Reference Systems **3** Gravity & Mechanics 4 Trajectories 5 Planetary Orbits <u>**6**</u> Electromagnetics **SECTION II** FLIGHT PROJECTS **7** Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network ## Phase C/D: Design and Development During the design and development phase, schedules are negotiated, and the space flight system is designed and developed. Then, in a process called ATLO (assembly, test, and launch operations) it is integrated, tested, launched and/or deployed, and verified. The design and development phase begins with the building and integration of subsystems and experiments into a single spacecraft. The complete spacecraft is tested together in a simulated space environment prior to launch. Voyager, Ulysses, Galileo, Cassini, and many more spacecraft have undergone extensive testing in JPL's 25-foot diameter solar-thermal-vacuum chamber. This image shows the Galileo spacecraft preparing for its turn. Click the image for a larger view. Ground systems to support the mission are also developed in parallel with the spacecraft development, and are exercised along with the spacecraft during tests. Phase C typically lasts until 30 days after launch. Reviews commonly conducted as part of the design and development phase include: Preliminary Design Review, Critical Design Review, Test Readiness Review, and Flight Readiness Review. ## **Operations Phase** The operations phase is also called MO&DA for Mission Operations and Data Analysis. It includes flying the spacecraft and obtaining science data for which the mission was designed. This phase is described in later sections of this training module: Chapters 14 through 17 present details of Launch, Cruise, Encounter, Extended Operations, and Project Closeout. ## **Design Considerations** The process by which a mission is conceived and brought through the phases described above includes consideration of many variables. The remainder of this chapter simply touches upon a few of them. ### Budget Trajectories are constrained by the laws of
celestial mechanics, but the realities of budgets constrain the desires and needs of project science to determine the final choices. Should the mission use a quick, direct path that can be achieved only with a massive upper stage, or an extended cruise with gravity assists for "free" acceleration? Can significant science be accomplished by going only a few weeks out of the way? Which options can be justified against the cost in personnel and time? This task of balancing the monetary, the political and the physical is ordinarily resolved before most project personnel are assigned. #### Design Changes The purpose, scope, timing and probable budget for a mission must be clearly understood before realistic spacecraft design can be undertaken. But even a final, approved and funded design may be altered when assumed conditions change during its lifetime. Design changes are always costly. The <u>Galileo</u> mission design, for example, underwent many significant and costly changes before it was finally launched. The Space Station Freedom spent tens of billions of dollars over several years prior to having comprehensive design changes imposed and becoming the International Space Station. #### Resource Contention Timing for many JPL missions is affected most directly by solar system geometry, which dictates optimum launch periods. It correspondingly implies the "part of the sky" that the proposed spacecraft will occupy and how many other spacecraft it may have to compete with for DSN antenna time. If possible, it is very advantageous to fly a mission toward an area where the spacecraft will share little or none of its viewperiod with other missions. Viewperiod is the span of time during which one DSN station can observe a particular spacecraft above its local horizon -- perhaps eight or so hours each day. Years before launch, mission designers request a "what-if" study by JPL's Resource Analysis Team to determine the probable degree of contention for DSN tracking time during the mission. Such a study can assist project management in the selection of launch date and mission profile with the least contention for external resources, and maximized science return for the mission. #### **Spacecraft Right Ascension** The diagram above illustrates how viewperiods may cause different spacecraft to compete for DSN resources. Abbreviations may be found in the Glossary. Even though the snapshot above dates back to 1993, it presents a valid picture of how various missions have to face potential contention for resources. When spacecraft occupy different areas of the sky, as in the April example, contention is at a minimum. However, when several spacecraft are bunched together in the same part of the sky, as they are in the December example, contention for DSN resources within heavily populated bunches may be formidable. Diagrams such as those shown above are produced by the Resource Allocation Team for ten year periods. They represent the situation on the 15th of the month shown. The arrow indicates the center of a spacecraft view from Earth. Extend 60 degrees on both sides of an arrow to describe an 8-hour viewperiod for a spacecraft. #### Tracking Capabilities DSN tracking and data handling capabilities must be considered when designing on-board storage, telemetry rates, trajectory and launch periods. Magellan, for example, acquired radar data at 800 kilobits per second. Since it used its high-gain antenna for both mapping and high rate communications, it required on-board storage sufficient to record its data during each mapping pass. The project needed assurance that it could count on DSN tracking time nearly 24 hours a day for the duration of the mission. The data for each orbit had to be downlinked immediately after being acquired or it would be lost, overwritten by data from the next orbit. This scheme made good use of the highly elliptical orbit that Magellan occupied during mapping phase. High-rate data acquisition took place during the 20 or 30 minutes near periapsis, and the hour-long outbound and inbound legs of each orbit were necessary to transmit the data to Earth at the lower rate of 268.8 kbps. The Mars Global Surveyor spacecraft also has limited on-board storage that requires carefully planned DSN tracking frequency to avoid data loss. The high transmission rate and the maximum distance to Mars must be taken into account when designers determine such things as transmitter power and high-gain antenna size. Most planetary orbiters, including Galileo and Cassini, face similar tracking and data delivery constraints. #### Data Return The proposed volume and complexity of the mission's telemetry influences the cost of ground processing. If telemetry does not present significant differences from recent missions, it may be economical to use an adaptation of the existing Advanced Multimission Operations System (AMMOS) rather than develop one that is mission-specific. In 1985 the Infrared Astronomy Satellite (IRAS) mission's data requirements drove the implementation of an entire data processing facility on the Caltech campus. Known as the Infrared Processing and Analysis Center (IPAC), it is also being used to support the Space Infrared Telescope Facility (SIRTF) mission. The image shows the IPAC, also called the Morrisroe Astroscience Laboratory. ## PRECEDING PAGE | NEXT PAGE HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS ## SECTION I **ENVIRONMENT** - 1 The Solar System - 2 Reference Systems - 3 Gravity & Mechanics - 4 Trajectories - 5 Planetary Orbits - **6** Electromagnetics #### **SECTION II** FLIGHT PROJECTS - **7** Mission Inception - **8** Experiments - 9 S/C Classification - 10 Telecommunications - 11 Onboard Systems - 12 Science Instruments - 13 Navigation #### **SECTION III** FLIGHT OPERATIONS - 14 Launch - 15 Cruise - **16** Encounter - **17** Extended Operations - 18 Deep Space Network 7.01 Teams of scientists who contribute and operate instruments for a space science mission may typically be chosen from... within NASA. academia. scientific institutions worldwide. JPL. 7.02 Historically, a JPL project gets its official start when funding is made available to JPL's Mission Design Section. True. False. 7.03 Contention for DSN resources may occur if a new spacecraft will appear with others in the same... plane. part of Earth's sky. celestial sphere. ## 7.04 Data return from a planned spacecraft drives... ground system hardware and software design. data processing facility requirements. trajectory constraints. #### **SKIP ANSWER CHECK** | HOME GUIDE IND | EX GLOSSARY UNITS | S OF MEASURE LINKS | |---|---|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification 10 Telecommunications | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter 17 Extended Operations | | 5 Planetary Orbits6 Electromagnetics | 11 Onboard Systems 12 Science Instruments 13 Navigation | 18 Deep Space Network | ## **Chapter 8. Experiments** #### **Objectives:** Upon completion of this chapter you will be able to identify what is referred to as the scientific community, describe the typical background of principal investigators involved with space flight, and describe options for gathering science data. You will be aware of radio science's special capabilities, and you will be able to describe avenues for disseminating the results of science experiments. Obtaining information about a particular aspect of the solar system is the primary reason for launching a robotic deep-space mission. Information is obtained by conducting an experiment under controlled conditions to collect and analyze data. After extensive analysis, that information is made available to the science community, and at the same time, to the public at large. Frequently, because of public interest, samples of JPL imaging data are released to the media by the Public Information Office shortly after collecting the data, before long-term analysis has been accomplished and published within the scientific community. ## The Scientific Community The scientific community involved in JPL's experiments is worldwide and typically is composed of PhD-level scientific professionals tenured in academia and their graduate students and similar-level professional scientists and their staff from industry, scientific institutions, and professional societies. ## **Gathering Scientific Data** Some experiments have a dedicated instrument aboard the spacecraft to measure a particular physical phenomenon, and some do not. A designated principal investigator (PI) or in many cases, a team, determines or negotiates the experiment's operation and decides who will analyze its data and publish the scientific results. Members of these teams may have been involved in the design of the instrument. Some examples of this kind of experiment are... - the Radar Sensor on the Magellan spacecraft and the associated Radar Investigation Group of 26 scientists worldwide headed by a PI at MIT; - the Photopolarimeter experiment on the Voyager spacecraft and their PI at JPL; - the Solid State Imaging experiment on the Galileo spacecraft and the imaging team headed by a PI at the University of Arizona. Details of typical individual instruments aboard spacecraft which are used to gather data for these experiments appear in Chapter 12. Other experiments are undertaken as opportunities arise to take advantage of a spacecraft's special capabilities or unique location or other circumstance. Some examples of this kind of experiment are... - the gravitational wave search using the DSN and
telecommunications transceivers aboard the Ulysses, Mars Observer, Galileo, and Cassini spacecraft (the PI is at Stanford University); - the UV spectral observations of various astronomical sources using the Voyager UV spectrometer by various members of the astronomical community; and - Venus atmospheric density studies using the attitude reaction wheels aboard the Magellan spacecraft by the PI at the NASA Langley Research Center. ## **Science and Engineering Data** Data acquired by the spacecraft's scientific instruments and telemetered to Earth, or acquired by ground measurements of the spacecraft's radio signal in the case of Radio Science, in support of scientific experiments, is referred to as science data. (Please see the editorial page for discussion of singular vs. plural "data.") Science data is the reason for flying a spacecraft. The other category of data telemetered from a spacecraft, its health and status data such as temperatures, pressures, and computer states, is referred to as engineering data. The latter is normally of a more repetitive nature, and if some is lost, the same measurement of pressure or temperature can be seen again in a short time. Except in cases of spacecraft anomalies or critical tests, science data is always given a higher priority than engineering data, because it is a mission's end product. Engineering data is used in carrying out spacecraft operations involved in obtaining the science data. ## The Science Data Pipeline Science data from on-board instruments, once received at the antennas of the DSN, flows through a string of computers and communications links known collectively as the Deep Space Mission System (DSMS), formerly called the Ground Data System (GDS). The functions of the DSMS can be viewed as generally divided into two high-level segments: front end and back end. Front end processing consists of frame-synchronizing the data stream (discussed further in Chapter 18), restoring the data formats that were created by the spacecraft computers, and providing real-time visibility of engineering and tracking data for engineering analysts and science instrument teams. Back end processing consists of data management to provide complete and catalogued data sets, production of data products such as images, and use of tools to access the data storage and cataloguing systems. While there is typically some front-end visibility into some of the science data in real time, it is mainly through the back end systems that science teams (for whom the missions are flown) are formally given access to complete sets of their science data. ## **Data Gaps** When science data is first received and stored by the data management system, it is common for significant segments to be missing. A data management team determines what gaps exist and whether or not they're recoverable. - Data that is easily recoverable has reached the ground and was stored either at a DSN station or at some intermediate subsystem in the DSMS front end. The data may have been missing from the back end due to some failure in the pipeline. Once identified and located, recovered data can be transferred to the data management system storage and integrated with data received earlier. - The problem is more complicated if DSN station problems or sudden rain over a station prevented reception of the data. In such cases, if it is of great value, the project may be able to recover it by commanding the spacecraft to replay a specific portion from its on-board storage subsystem before it gets overwritten. Final science data products usually consist of time-ordered, gap-controlled sets of instrument-specific data records known as Experiment Data Records (EDRs). Other products that support analysis of the science data include collections of DSN monitor data which indicates the performance of DSN receivers, tracking and telemetry equipment, selected spacecraft engineering data, spacecraft ephemeris and pointing data. These are known as Supplementary Experiment Data Records (SEDRs) or the equivalent. SEDRS track the history of instrument pointing (discussed in Chapter 12), detailing the instrument's "footprint" on the object being imaged. While all these data products have historically been produced within the Data Management Systems of some projects, Cassini is an example of a new, more distributed plan that calls for its science teams to produce most or all the science data products after compilation and analysis. Cassini's small Data Management Team performs only those data management functions needed to deliver complete data sets to the science teams. #### **Radio Science** Radio science (RS) experiments use the spacecraft radio and the DSN together as their instrument, rather than using only an instrument aboard the spacecraft. They record the attenuation, scintillation, refraction, rotation, Doppler shifts, and other direct modifications of the radio signal as it is affected by the atmosphere of a planet, moons, or by structures such as planetary rings or gravitational fields. From these data, radio scientists are able to derive a great deal of information such as the structure and composition of an atmosphere and particle sizes in rings. #### Occultations One RS experiment can take place when a spacecraft passes behind a ring system. The spacecraft keeps its radio signal trained on Earth, and effects of ring particles can be detected in the signal. Passing behind a planet or a planet's atmosphere, the spacecraft may be RADIO SCIENCE ATMOSPHERIC OCCULTATION EXPERIMENT commanded to rotate so that its radio signal remains trained on the "virtual Earth," the point where refraction makes the signal bend toward Earth. The "atmosphere" of the sun is another target of great interest which can be observed by RS. The solar corona causes scintillation, rotation, and other effects on the spacecraft's radio signal which can be measured while a spacecraft is within a few tens of degrees from the sun as viewed from Earth. This data is useful for investigating the nature and behavior of the solar corona. Also when a spacecraft is near superior conjunction, radio science experiments may be conducted to quantify the general-relativistic gravitational bending (also called gravitational lensing) imposed on the spacecraft's radio link as it grazes the sun. Such bending results in a slight increase in the apparent distance to the spacecraft. This predicted GR effect was first confirmed in 1919 during a solar eclipse by observing the shift in the apparent positions of stars in the Hyades cluster visible near the eclipsed solar disc. #### Gravitational Waves # http://www.jpl.nasa.gov/basics/bsf8-1.html (5 of 8) [4/10/2001 1:48:35 PM] Another RS experiment is the gravitational wave search, or gravitational wave experiment (GWE). Gravitational waves are predicted by general relativity, but as of late 2000 they have never been detected directly. Measuring minute Doppler shifts of a spin-stabilized spacecraft or a reaction-wheel-stabilized spacecraft in interplanetary space over long periods of time might yield the discovery. Spacecraft such as Voyager, which are stabilized by thruster bursts, cannot participate. The spacecraft's distance would be observed to increase and then decrease on the order of millimeters as a gravitational wave passes through the solar system. Even if these gravitational wave searches have negative results, this information is scientifically useful because it places limits on the magnitude of long-wavelength gravitational waves. #### Celestial Mechanics Another RS experiment can determine the mass of an object like a planet or satellite. When nearing the body, the experiment measures the minute acceleration its gravitation exerts on the spacecraft. This acceleration is translated into a measurement of the body's mass. Once the mass is known, by the way, the object's density can be determined if images are available that show the body's size. Knowing the density provides powerful clues to a body's composition. ## **Gravity Field Surveys** Another science experiment, like radio science but not strictly classified as such, does not use an instrument aboard the spacecraft. Gravity field surveys (not to be confused with gravitational wave searches) use the spacecraft's radio and the DSN to measure minute Doppler shifts of a vehicle in planetary orbit. After subtracting out the Doppler shifts induced by planetary movement, the spacecraft's primary orbital motion, and small force factors such as the solar wind and atmospheric friction, the residual Doppler shifts are indicative of small spacecraft accelerations and decelerations. These are evidence for variations in the planet's gravity field strength associated with high and low concentrations of mass at and below the planet's surface. Mapping the planet's mass distribution in this way yields information that complements other data sets such as imaging or altimetry in the effort to understand geologic structure and processes at work on the planet. Gravity field surveying is further described in Chapter 16. This image shows crustal thickness on the Moon as derived from gravity data. Click the image for more details. ## **Dissemination of Results** Publication of the results of the experiments takes place in the literature of the scientific A 180-line by 360-line sample image of effective Lunar crustal thicknesses derived from <u>Clementine gravity field survey data</u>. Resolution is 1 x 1 degree. The images are in simple cylindrical projection. High crustal thiskness is indicated in red, low in dark blue. community, notably the journals *Science* (American Association for the Advancement of Science, <u>AAAS</u>), <u>Nature</u>, the international weekly journal of science, <u>JGR</u> (Journal of Geophysical Research, a publication of the American Geophysical Union), and <u>Icarus</u>, the official publication of the Division for Planetary Sciences of the American
Astronomical Society. Presentations are made at virtually every annual convention of various scientific societies such as those mentioned above by experimenters who use JPL's spacecraft. If an operations person has an opportunity to attend one or more, it would be very worthwhile. The news media and several magazines keep a close eye on all of these journals and proceedings and report items of discovery from them. The thin weekly magazine <u>Science News</u> is a notable example, as is the amateur astronomers' monthly <u>Sky & Telescope</u> magazine. Splendid photography from JPL's missions occasionally appears in <u>National Geographic</u> magazine, and many a JPL mission has enjoyed very good treatment in public television's science series <u>Nova</u> and documentaries on cable TV's <u>Discovery channel</u>. Regional Planetary Imaging Data Facilities (RPIF) are operated by NASA's Planetary Data Center (PDS) at over a dozen sites around the United States and overseas. Each maintains a complete photographic library of images from NASA's lunar and planetary missions. They are open to members of the public by appointment for browsing, and their staff can assist individuals in selecting and ordering materials. All of NASA's planetary imaging data is made available for researchers who are funded by NASA, in photographic format and digital data format, via the PDS. Educators may obtain a wide variety of materials and information from NASA's flight projects through the network of Educator Resource Centers (ERC) in cooperation with educational institutions around the country. Each ERC also supports a center for distribution of audiovisual materials called the Central Operation of Resources for Educators (CORE). Members of the public may purchase photographic images and videotapes through contractor facilities associated with JPL's Public Information Office (PIO). The PIO can serve as a clearinghouse for information about access to all of the various avenues for dissemination. As evident from all the above links, increasing use is being made of the World-Wide Web (WWW) to disseminate scientific results. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS **SECTION I** **ENVIRONMENT** 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification $\underline{\textbf{10}} \ \underline{\textbf{Telecommunications}}$ 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network # **Chapter 8. Experiments** 8.01 Flight science experiments such as imaging and spectroscopy rely upon instruments... aboard the spacecraft. frequently designed and operated by a PI or science team. within the DSN. at JPL. 8.02 Scientific data produced by an experiment aboard a spacecraft is generally much less important than engineering data about the spacecraft's state of health. True. False. 8.03 What is the name of the discipline that uses a spacecraft's radio transceiver and the DSN together as an instrument for many kinds of experiments? spectroscopy. telemetry. radio science. radio astronomy. # 8.04 Which of the following are scientific journals in which results of many JPL spacecraft experiments are first formally published? *Icarus* Science News Nature Science Sky & Telescope Astronomy **JGR** National Geographic #### **SKIP ANSWER CHECK** | HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS | | | | |--|--|--|--| | SECTION I ENVIRONMENT The Solar System | SECTION II FLIGHT PROJECTS 7 Mission Inception | SECTION III FLIGHT OPERATIONS 14 Launch | | | 2 Reference Systems 3 Gravity & Mechanics | 8 Experiments 9 S/C Classification | 15 Cruise
16 Encounter | | | TrajectoriesPlanetary Orbits | 10 Telecommunications 11 Onboard Systems | 17 Extended Operations18 Deep Space Network | | | 6 Electromagnetics | 12 Science Instruments | 10 Deep Space Network | | 13 Navigation #### **Objectives:** Upon completion of this chapter you will be able to state the characteristics of various types of robotic spacecraft and be able to identify any of JPL's past, current, or future spacecraft as belonging to one of eight basic categories. Robotic spacecraft are specially designed and constructed systems that can function in specific hostile environments. Their complexity and capabilities vary greatly and their purposes are diverse. To make some sense of all these variables, this chapter arbitrarily designates eight broad classes of robotic spacecraft according to the missions the spacecraft are intended to perform: - 1. Flyby spacecraft - 2. Orbiter spacecraft - 3. Atmospheric spacecraft - 4. Lander spacecraft - 5. Rover spacecraft - 6. Penetrator spacecraft - 7. Observatory spacecraft - 8. Communications spacecraft We illustrate these eight classes by offering one prime example of each pictured on this page and, in most cases, some additional linked examples. Be sure to select and read each prime example, plus several additional links. The JPL public website has an up-to-date <u>listing</u> of all past, current, future and proposed JPL robotic spacecraft missions. Spacecraft that carry human occupants are not considered here. ## (1) Flyby Spacecraft Flyby spacecraft conducted the initial reconnaissance phase of solar system exploration. They follow a continuous solar orbit or escape trajectory, never to be captured into a planetary orbit. They must have the capability of using their instruments to observe targets they pass. Ideally, they can pan to compensate for the target's apparent motion in optical instruments' field of view. They must downlink data to Earth, storing data onboard during the periods when their antennas are off Earthpoint. They must be able to survive long periods of **VOYAGER 2** interplanetary cruise. Flyby spacecraft may be designed to be stabilized in 3 axes using thrusters or reaction wheels or to spin continuously for stabilization. Our prime example of the <u>flyby spacecraft</u> category is Voyager 2, which conducted encounters in the Jupiter, Saturn, Uranus, and Neptune systems. <u>Click the Voyager image</u> for details of the twin Voyager 1 and 2 spacecraft. Other examples of flyby spacecraft include: - Stardust Cometary Sample Return - Mariner 2 to Venus - Mariner 4 to Mars - Mariner 5 to Venus - Mariner 6 and 7 to Mars - Mariner 10 to Mercury - Pioneers 10 and 11 to Jupiter and Saturn - Pluto-Kuiper Express ## (2) Orbiter Spacecraft A spacecraft designed to travel to a distant planet and enter into orbit about it must carry with it a substantial propulsive capability to decelerate it at the right moment to achieve orbit insertion. It has to be designed to live with the fact that solar occultations will occur, wherein the planet shadows the spacecraft, cutting off any solar panels' production of electrical power and subjecting the vehicle to extreme thermal variation. Earth occultations will also occur, cutting off uplink and downlink communications with Earth. Orbiter **GALILEO** spacecraft are carrying out the second phase of solar system exploration, following up the initial reconnaissance with in-depth study of each of the planets. These include Magellan, Galileo, Mars Global Surveyor, and Cassini. Our prime example of the <u>orbiter spacecraft</u> category is Galileo which entered orbit about Jupiter in 1995 to carry out a highly successful study of the Jovian system. Click the Galileo image for details of the Galileo spacecraft. Other examples of orbiter spacecraft include: - Mariner 9 Mars Orbiter - Cassini Saturn Orbiter - Mars Global Surveyor - TOPEX/Poseidon Earth Orbiter - <u>Ulysses</u> Solar Polar Orbiter - Jason Earth Orbiter - Mars '01 Orbiter - Magellan Venus Orbiter - Europa Orbiter - Mars Observer a spacecraft lost ## (3) Atmospheric Spacecraft Atmospheric spacecraft are designed for a relatively short mission to collect data about the atmosphere of a planet or satellite. One typically has a limited complement of spacecraft subsystems. For example, an atmospheric spacecraft may have no need for propulsion subsystems or attitude and articulation control system subsystems at all. It does require an electric power supply, which may simply be batteries, and telecommunications equipment for **HUYGENS** tracking and data relay. Its scientific instruments may take direct measurements of an atmosphere's composition, temperature, pressure, density, cloud content and lightning. Typically, atmospheric spacecraft are carried to their destination by another spacecraft. Galileo carried its atmospheric probe on an impact trajectory with Jupiter in 1995 and increased its spin rate to stabilize the probe's attitude for atmospheric entry. After probe release Galileo maneuvered to change from an impact trajectory to a Jupiter Orbit Insertion trajectory. An aeroshell protected the probe from the thousands of degrees of heat created by atmospheric friction during atmospheric entry, then parachutes deployed after the aeroshell was jettisoned. The probe completed its mission on battery power, and the orbiter relayed the data to Earth. The Pioneer 13 Venus Multiprobe Mission deployed four atmospheric probes that returned data directly to Earth during descent into the Venusian atmosphere in 1978. Balloon packages are atmospheric probes designed for suspension from a buoyant gas bag to float and travel with the wind. The Soviet Vega 1 and Vega 2 missions to Comet Halley in 1986 deployed atmospheric balloons in Venus' atmosphere en route to the comet. DSN tracked the instrumented balloons to investigate winds in the Venusian atmosphere. (The Vega missions also deployed
Venus landers.) While not currently funded, informal plans for other kinds of atmospheric spacecraft include battery powered instrumented airplanes and balloons for investigations in Mars' atmosphere. Our prime example of the <u>atmospheric spacecraft</u> category is Huygens, which is being carried to Saturn's moon Titan by the Cassini spacecraft. Click the Huygens image for details of the Huygens spacecraft. Other examples of atmospheric spacecraft include: • Galileo Atmospheric Probe - Mars Balloon - Vega 1 Venus Balloon - Vega 2 Venus Balloon - Pioneer 13 Venus Multiprobe Mission ### (4) Lander Spacecraft Lander spacecraft are designed to reach the surface of a planet and survive long enough to telemeter data back to Earth. Examples have been the highly successful Soviet Venera landers which survived the harsh conditions on Venus while carrying out chemical composition analyses of the rocks and relaying color images, JPL's Viking landers at Mars, and the Surveyor series of landers at Earth's moon, which carried out similar experiments. The Mars Pathfinder project, which landed on Mars on July 4, 1997, and deployed a rover, was intended to be the first in a series of landers on the surface of Mars at widely **PATHFINDER** distributed locations to study the planet's atmosphere, interior, and soil. A system of actively-cooled, long-lived Venus landers designed for seismology investigations, is being envisioned for a possible future mission. Our prime example of the <u>lander spacecraft</u> category is Mars Pathfinder. <u>Click the Pathfinder image</u> for details of the Pathfinder spacecraft. Other examples of lander spacecraft include: - Viking Mars Landers - Venera 13 Venus Lander - Surveyor Moon Landers ## (5) Penetrator Spacecraft Surface penetrators have been designed for entering the surface of a body, such as a comet, surviving an impact of hundreds of Gs, measuring, and telemetering the properties of the penetrated surface. As of November 2000, no Penetrator spacecraft have been successfully operated. Penetrator data would typically be telemetered to an orbiter craft for re-transmission to Earth. The Comet Rendezvous / Asteroid Flyby (CRAF) mission included a cometary penetrator, but the mission was cancelled in 1992 due to budget constraints. Our prime example of a <u>penetrator spacecraft</u> is the twin Deep Space 2 penetrators which piggybacked to Mars aboard the Mars **DEEP SPACE 2** Polar Lander and were to slam into Martian soil December 3, 1999. They were never heard from. Click the Deep Space 2 image for details of the penetrator spacecraft. Other examples of penetrator spacecraft include: - Deep Impact Mission to a comet - Ice Pick Mission to Europa - Lunar-A Mission to Earth's Moon ## (6) Rover Spacecraft Electrically-powered rover spacecraft are being designed and tested by JPL as part of Mars exploration effort. The Mars Pathfinder project included a small, highly successful mobile system referred to as a micro-rover by the name of Sojourner. Mars rovers are also being developed by Russia with a measure of support from The Planetary Society. Rover craft need to be semi-autonomous. They are steerable from Earth. Their purposes range from taking images and soil analyses to collecting samples for return to Earth. **SOJOURNER** Our prime example of a rover spacecraft is of course the famous Sojourner Rover, shown here in an image from the surface of Mars. Click the Sojourner image for details of the rover spacecraft. Other examples of rover spacecraft include: - Marsokhod Russian Mars Rover - LunaCorp Commercial Lunar Rover - Red Rover Student activity ### (7) Observatory Spacecraft An observatory spacecraft does not travel to a destination to explore it. Instead, it occupies an Earth orbit or a solar orbit from where it can observe distant targets free of the obscuring and blurring effects of Earth's atmosphere. NASA's Great Observatories program studies the universe at wavelengths from visible light to gamma-rays. The program includes four Observatory Spacecraft: the familiar Hubble Space Telescope (HST), the Chandra X-Ray Observatory (CXO -- previously known as AXAF), the Compton Gamma Ray Observatory (GRO), and the Space Infrared Telescope Facility (SIRTF). **SIRTF** The HST is still operating as of November 2000. GRO has completed its mission and was de-orbited in June 2000. CXO was launched in July 1999 and continues to operate. SIRTF is set to launch in 2002. In the coming decades many new kinds of observatory spacecraft will be deployed to take advantage of the tremendous gains available from operating in space. Our prime example of an <u>observatory spacecraft</u> is the JPL SIRTF Project. Click the SIRTF image for details of the observatory spacecraft. Other examples of observatory spacecraft include: - **HST** Hubble Space Telescope - Chandra X-ray Observatory - Compton Gamma-ray Observatory - IRAS Infrared Astronomical Satellite - TPF Terrestrial Planet Finder - NGST Next-Generation Space Telescope - SIM Space Interferometry Mission - Planck Cosmic Background Radiation Field survey - <u>ST3</u> Space Technology 3 ### (8) Communications Spacecraft Communications spacecraft are abundant in Earth orbit, but they are largely incidental to JPL's missions. The Deep Space Network's Ground Communications Facility does make use of Earth-orbiting communications spacecraft to transfer data among its sites in Spain, Australia, California, and JPL. In the future, communications spacecraft may be deployed at Mars, Venus, or other planets to communicate with orbiters, rovers, penetrators, and atmospheric spacecraft operating in their vicinity. Their purpose would be to augment the Deep Space Network's capabilities to communicate with the resident spacecraft. None are in place as of November, 2000. This concept is revisited in Chapter 18. The communications spacecraft example offered here is NASA's Tracking and Data Relay Satellite System, TDRSS. Click the TDRSS image for details of this communications spacecraft. **TDRSS** ## For Further Browsing Here is a list of virtually every lunar and planetary mission ever flown or attempted by any nation, and those on schedule for future launch. The list is arranged by launch date, and each entry is linked to a page of facts about the mission. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS #### **SECTION I** **ENVIRONMENT** - 1 The Solar System - 2 Reference Systems - 3 Gravity & Mechanics - **4** Trajectories - **5** Planetary Orbits - 6 Electromagnetics #### **SECTION II** FLIGHT PROJECTS - 7 Mission Inception - **8** Experiments - 9 S/C Classification - **10** Telecommunications - 11 Onboard Systems - **12** Science Instruments - 13 Navigation #### **SECTION III** FLIGHT OPERATIONS - 14 Launch - 15 Cruise - **16** Encounter - **17** Extended Operations - 18 Deep Space Network **Classification:** Flyby spacecraft. **Mission:** Jovian planets and interstellar space. **Features:** The Voyager 1 and Voyager 2 spacecraft were launched in late 1977 aboard Titan III launch vehicles with Centaur upper stages. They completed highly successful prime mission flybys of Jupiter in 1979 and Saturn in 1980 and 1981. Voyager 2's extended mission succeeded with flybys of Uranus in 1986 and Neptune in 1989. Both spacecraft are still healthy in 2000, and are conducting studies of interplanetary space enroute to interstellar space. Voyager 1 and Voyager 2 are collecting low frequency radio emissions from the termination shock (see Chapter 1), which is estimated to be within reach of the spacecraft during its mission lifetime. Science data return is expected to continue until about 2020. A long-silent Voyager 2 is projected to pass within a light year of nearby Barnard's Star 350,000 years in the future. Both Voyager 1 and 2 will forever orbit the center of our galaxy, never returning to the sun. **Stabilization:** Three-axis stabilized via thrusters. Also see: Voyager Project Website. Marine Mariner 2 was the world's first successful interplanetary spacecraft. Launched August 27, 1962, on an Atlas-Agena rocket, Mariner 2 passed within about 34,000 kilometers (21,000 miles) of Venus, sending back valuable new information about interplanetary space and the Venusian atmosphere. Mariner 2 recorded the temperature at Venus for the first time, revealing the planet's very hot atmosphere of about 500 degrees Celsius (900 degrees Fahrenheit). The spacecraft's solar wind experiment measured for the first time the density, velocity, composition and variation over time of the solar wind. • Launch: August 27, 1962 • Encounter: December 14, 1962 • Weight: 447 pounds; 40 pounds were instruments • Project Manager: Jack James • Project Scientist: R. C. Wyckoff Go to: JPL Home Page JPL Missions Mariner 4 Mariner 4 gave scientists their first glimpse of Mars at close range, passing over the planet at an altitude of 9,846 kilometers (6,118 miles) above the surface and putting to rest the myths of the late 19th century that the planet may have harbored an advanced civilization. Launched on November 28, 1964, Mariner 4 carried a television camera and six other science instruments to study interplanetary space between the orbits of Earth and Mars and in the vicinity of Mars itself. The spacecraft took 22 television pictures covering about 1 percent of Mars's surface, which revealed a vast, barren wasteland of craters strewn about a rust-colored carpet of sand. The canals that Percival Lowell had spied with his telescope in 1890 proved to be an optical illusion, but natural waterways of some kind seemed to be evident in some regions of the planet. Other experiments measured atmospheric density and the interplanetary medium. Once past Mars, Mariner 4 journeyed on to the far side of the Sun before returning to the vicinity of Earth again in 1967. Nearly out of power by then, engineers decided to use the aging craft for a series of operational and telemetry tests to
improve their knowledge of the technologies that would be needed for future interplanetary spacecraft. All operations of the spacecraft ceased on December 20, 1967. - Launch: November 28, 1964 - Ecounter: reach Mars July 14, 1965 - Closest flyby: 6,118 miles - Weight: 575 pounds, 60 pounds instruments - Instruments: Television Camera, Solar Plasma probe, Ionization chamber, Trapped radiation detector, Helium vector magnetometer, Cosmia ray telescope, Cosmic dust detector - Project Manager: Jack N. James - Project Scientist: Richard K. Sloan Go to: JPL Home Page JPL Missions Mariner 5 was launched to Venus on June 14, 1967, and arrived in the vicinity of the planet on October 19, 1967. The spacecraft carried a complement of experiments to probe Venus's atmosphere with radio waves, scan its brightness in ultraviolet light, and sample the solar particles and magnetic field fluctuations above the planet. Closest flyby distance was 3,990 kilometers (2,480 miles) and, with more sensitive instruments than its predecessor, Mariner 5 was able to shed new light on the hot, cloud-covered planet and on conditions in interplanetary space. The spacecraft also advanced the techniques of building and operating interplanetary spacecraft, as had each Mariner before it. All operations of Mariner 5 were closed out in November 1967. Go to: JPL Home Page JPL Missions Mariners 6 and 7 were designed to fly over the equator and southern hemisphere of the planet Mars. Mariner 6 was launched on February 24, 1969, followed by Mariner 7 on March 27 of that year. A hundred million kilometers (62 million miles) later, Mariner 6 encountered Mars on July 31, 1969; Mariner 7 reached the planet four days later on August 4, 1969. The two spacecraft transmitted to Earth a combined total of 143 approach pictures of the planet and 55 close-up pictures. Closest approach to Mars for both spacecraft was approximately 3,550 kilometers (2,200 miles) above the planet's surface. The pair of spacecraft studied the Martian atmosphere and profiled its chemical composition. Television cameras spotted Phobos, the inner and larger of Mars's two tiny moons, and photographed the northern and southern polar caps. Geologic features -- including cratered deserts, huge concentrically terraced impact regions, collapsed ridges and craterless depressions -- were among the Mariners' many revelations. Go to: JPL Home Page JPL Missions Mariner 10 was the first mission to use the gravitational attraction of one planet to reach another. On November 3, 1973, Mariner 10 was launched toward Venus, reaching the Venusian atmosphere on February 5, 1974. Some 4,000 photos of Venus revealed a nearly round planet enveloped in smooth cloud layers. Venus exhibited a slow rotational period of 243 days and had only 0.05 percent of Earth's magnetic field. The planet's atmosphere was mostly hydrogen, resulting from solar wind bombardment. After the Venus flyby, Mariner's trajectory was bent in toward the Sun to accelerate and fling it out of Venus's gravitational field and onward to Mercury. Mariner 10 reached Mercury on March 29, 1974, passing over the planet at just 705 kilometers (438 miles) above the surface. Photographs revealed an intensely cratered, Moon-like surface and a faint atmosphere of mostly helium. After the flyby, Mariner entered solar orbit, flying by Mercury again on September 20-23, 1974, and photographing the sunlit side of the planet and the south polar region. Go to: JPL Home Page JPL Missions ## Pioneers 10 and 11 **Classification:** Flyby spacecraft. **Mission**: Jupiter, Saturn, and interstellar space. **Features:** Pioneer 10 and 11 launched in 1972 and 1973, and penetrated the asteroid belt. Pioneer 10 was the first spacecraft to study Jupiter and its environment, and obtain spin-scan images of the planet. Pioneer 11 also encountered Jupiter, and went on to become the first to encounter Saturn, its rings and moons. Pioneers 10 and 11 are still operative in the far reaches of the outer solar system, and are still being tracked in November 1995. Pioneer 11's science operations and daily telemetry ceased on September 30, 1995 when the RTG power level was insufficient to operate any experiments. It is likely that Pioneer 10 will follow suit around the time of this publication in November 2000, as recent attempts to track it have been largely unsuccessful. **Stabilization:** Spin stabilized. See also: the Pioneer 10 and the Pioneer 11 pages of the Pioneer Project website. # Pluto-Kuiper Express ... to explore Pluto/Charon and the fringes of our Solar System > 2000/09/13 - A NASA stop work order has been issued for The Pluto-Kuiper Express mission as currently envisioned. Further direction from NASA has been given to develop a new mission to reach Pluto before 2020. - → <u>Mission at a Glance</u> → <u>Mission</u> <u>Information</u> - → <u>Pluto-Kuiper Express Student</u> Involvement the smallest planet, has remained enigmatic since its <u>discovery</u> by astronomer <u>Clyde Tombaugh</u> in 1930. Pluto is the only planet in our Solar System not yet viewed close-up by If the encounter with Pluto is successful, the mission may be extended to encounter one or more icy, asteroid-sized objects in the Kuiper Disk. CL-95-1463 **Classification:** Orbiter spacecraft. **Mission:** Investigate Jupiter's atmosphere, magnetosphere, and satellites. **Features:** Galileo was launched aboard the Space Shuttle in October 1989. It executed science observations during gravity-assist flybys of Venus and Earth, as well as during two asteroid flybys. It observed Comet Shoemaker-Levy 9's impact with Jupiter in July 1994. Galileo entered Jovian orbit December 1995 shortly after receiving the data from its atmospheric probe, which entered Jupiter's atmosphere. Galileo has carried out a very successful tour of the Jovian system. Stabilization: Spin stabilized. Also see: <u>Large detailed illustration</u> of the Galileo Orbiter; <u>Spacecraft prior to launch</u>; the <u>Galileo Project</u> website. Mariner 9 became the first spacecraft to orbit another planet. Launched on May 30, 1971, the 506-kilogram (1116-pound) spacecraft circled Mars twice each day for a full year, photographing the surface and analyzing the atmosphere with infrared and ultraviolet instruments. When Mariner 9 first arrived, Mars was almost totally obscured by dust storms, which persisted for a month. But after the dust cleared, Mariner 9 proceeded to reveal a very different planet -- one that boasted gigantic volcanoes and a grand canyon stretching 4,800 kilometers (3,000 miles) across its surface. More surprisingly, the relics of ancient riverbeds were carved in the landscape of this seemingly dry and dusty planet. Mariner 9 exceeded all primary photographic requirements by photo-mapping 100 percent of the planet's surface and taking the first closeup photographs of the tiny Martian moons, Deimos and Phobos. Go to: JPL Home Page JPL Missions # Cassini **Classification:** Orbiter spacecraft. **Mission:** Explore Saturnian system. **Features:** Cassini was launched aboard a Titan IV with a Centaur upper stage on October 15, 1997. It encountered Venus, Earth and Jupiter for gravity assists, to reach Saturn in July 2004 and enter into orbit. Its mission is to spend four years conducting a detailed examination of Saturn's atmosphere, rings, and magnetosphere, and close-up studies of its satellites. Cassini will radar map portions of Titan's surface. Cassini carries the Huygens probe to parachute into the atmosphere of Saturn's largest satellite Titan. **Stabilization:** Three-axis stabilized via reaction wheels and thrusters. Also see: Cassini Program website. **Classification:** Orbiter spacecraft. Mission: Global view of Earth's oceans. **Features:** Topex/Poseidon is a joint project between NASA and Centre National d'Etudes Spatiales (CNES) launched in mid 1992 aboard an Ariane 4. The spacecraft occupies a 1336-km-high Earth orbit inclined 66 degrees. Revealing minute differences in the oceans' heights, Topex/Poseidon's data has lead to improved understanding of oceanic circulation and forecasting of global environment. One of its best-known results has been the improved understanding of Earth's El Niño climate phenomenon. **Stabilization:** Three-axis stabilized via reaction wheels and thrusters. **See also:** the Topex/Poseidon Project website, and the Jason website. **Classification:** Orbiter spacecraft. Mission: Study the sun from solar polar latitudes. **Features:** The Ulysses spacecraft is a joint project between NASA and the European Space Agency (ESA). It was launched in late 1990 via the Space Shuttle with an IUS upper stage and Payload Assist Module (PAM-S). It encountered Jupiter early in 1992 for a gravity assist to achieve a trajectory at nearly right angles to the ecliptic plane. It will undertake exploration of the Sun's high southern latitudes June through October 1994. It will make a pass over the Sun's north polar region between June and September 1996. At no time will it approach less than 1 AU from the sun. While within Jupiter's environs for its gravity assist, it made significant observations of the Jovian system. Ulysses carries fields and particles instruments. Its U.S. counterpart, a second spacecraft with imaging instruments, designed to travel simultaneously over the opposite Solar poles, was cancelled by the U.S. **Stabilization:** Spin stabilized. See also: JPL's <u>Ulysses Project website</u>. # Magellan **Classification:** Orbiter spacecraft. **Mission:** Venus mapping. Features: The Magellan spacecraft was launched in early 1989 via the Space Shuttle Atlantis and an IUS upper stage. By the end of its fourth Venus-rotation cycle (243 days each) four years after launch, Magellan had mapped 98% the surface of Venus with imaging, altimetry, and radiometry, performed several radio science experiments, and had surveyed the gravity field at low latitudes all the way around the planet. The
imaging resolution was about 100 m, close enough to discern the various geologic processes for the first time. Magellan's periapsis was lowered into Venus's atmosphere for a thousand orbits, aerobraking into a nearly circular orbit. Magellan's periapsis was then raised out of the atmosphere, and it completed high-resolution mapping of the planet's gravity field from low circular orbit. Magellan was then intentionally flown to its destruction in Venus's atmosphere in October 1994, all the while carrying out additional experiments. **Stabilization:** Three-axis stabilized via reaction wheels and thrusters. Also see: Magellan Project Website. # \rightarrow Mission at a Glance \rightarrow Europa Orbiter Fact Sheet \rightarrow Science Definition Team Reports **E** uropa, fourth largest satellite of Jupiter, has gained the rank of one of the highest priority targets for an outer Solar System exploration mission. If liquid water were to exist on Europa, it would not be unreasonable to speculate on the existence of life there, perhaps forming near undersea volcanic vents. Life on Earth has been discovered at great ocean depths, beyond the penetration of sunlight, thriving on upwelling chemical nutrients from the interior of the planet. (see "The Greening of Europa," from Scientific American and "Clues to possible life on Europa may lie buried in Antarctic ice" from the Marshall Space Flight Center.) NASA's **Galileo** spacecraft has recently sent back to Earth amazingly detailed images of the surface of Europa. Many scientists believe the pictures reveal a relatively young surface of ice, possibly only about 1 km (~3250 feet) thick in places. Internal heating on Europa due to Jupiter's tidal pull could melt the underside of the icepack, forming an ocean of liquid water underneath the surface. #### More Images of Europa from the Galileospacecraft As part of NASA's Outer Planets/Solar Probe Project, preliminary development has begun on a mission to send a spacecraft to Europa to measure the thickness of the surface ice and to detect an underlying liquid ocean if it exists. Using an instrument called a radar sounder to bounce radio waves through the ice, the Europa Orbiter sciencecraft would be able to detect an ice-water interface, perhaps as little as 1 km below the surface. Other instruments would reveal details of the surface and interior processes. This mission would be a precursor to lander missions, which would make detailed studies of the surface characteristics, such as composition, seismology, and physical state. Such landers might themselves be precursors to sending "hydrobots" or remote controlled submarines that could melt through the ice and explore the undersea realm. ## **✓** Other sites to visit to learn more about Europa and Europa Orbiter: **NASA Announcement of Opportunity** Preventing the Forward Contamination of Europa - Any spacecraft The Task Group on the Forward Contamination of Europa Space Studies Board Commission on Physical Sciences, Mathematics, and Applications National Research Council **Europa Orbiter Reference Trajectories** <u>Galileo Europa Mission (GEM)</u> a two-year extended mission to closely explore Europa and Io. <u>Europa Fact Sheet and images</u> from the **Galileo** homepage - What is known about Europa so far. Animations of Galileo's orbit 6 encounter with Europa. Galileo Finds Europa Has An Atmosphere. <u>The Grandest Tour</u> - Information about the **Voyager**outer planets missions, including images and spacecraft trajectories. Sulfuric acid found on Europa: Sulfur from fiery volcanoes on Io may be responsible for a battery acid chemical on Europa with implications for astrobiology. Story from the NASA Space Science News web site from the Marshall Space Flight Center. <u>Divining Water on Europa</u> - NASA Space Science News article from the Marshall Space Flight Center about the mounting evidence for water on Europa. JPL's Advanced Radar Technology Program (ARTP) NASA/JPL Outer Planets/Solar Probe Project This page was last updated/reviewed on August 24, 2000 Comments about this page can be emailed to the editor. ## **Mars Observer** **Classification:** Orbiter spacecraft. **Mission:** Mars mapping. **Features:** The Mars Observer spacecraft was launched in 1992 aboard a Titan III with a Transfer Orbit Upper Stage. Unfortunately, communications with the spacecraft were lost just before its orbit insertion maneuver in September, 1993. Based upon the design for an Earth-orbiting spacecraft, it was to observe Mars for one continuous Martian year (687 Earth days), studying surface mineralogy and morphology, topography, atmospheric circulation and the movement of water, dust, fog and frost. It would have characterized the gravitational field and the magnetic field. It also would have provided Earth relay capability for Russian landers and the Mars Balloon. **Stabilization:** Three-axis stabilized via reaction wheels and thrusters. # **Huygens** **Classification:** Atmospheric probe spacecraft. Mission: Investigate Titan's atmosphere. **Features:** The Huygens Probe, supplied by the European Space Agency (<u>ESA</u>), is being carried by the Cassini spacecraft to Titan, Saturn's largest moon, and will be deployed carrying six science instruments into Titan's atmosphere in 2004. If it survives impact with the surface of Titan, it may be able to continue to transmit science data from the surface, whether that surface is liquid or solid. Stabilization: Spin stabilized. **See also:** the Huygens Probe Home Page. ## **Mars Pathfinder** **Classification:** Lander spacecraft with surface rover. **Mission:** Analyze Martian soil. **Features:** Pathfinder was a low-cost mission with a single flight system launched December 1996 aboard a Delta rocket for a Mars landing in July 1997. The spacecraft entered the atmosphere directly from its transfer trajectory, and analyzed the atmosphere on the way in. It carried a small rover, which performed technology, science, and engineering experiments on the surface of Mars. The lander parachuted toward the surface, with retrorocket braking assist. Eight seconds before impact on the Martian surface, three airbags inflated on each of the three folded "petals" of the lander, cushioning its impact. After the airbags deflated, the petals then deployed, exposing solar panels to the sunlight, and righting the lander. The rover then drove off the solar panel and onto the Martian soil. The lander was designed to operate on the surface for over 30 Martian days and nights, but it survived longer, returning panoramic views of the Martian landscape, and measuring the soil's chemistry, and characterizing the seismic environment. **Stabilization:** Spin stabilized during cruise. See also: Spacecraft overview image; Pathfinder Project website; Entry, Description Description Deployment animation mpeg; View of lander on Martian surface taken from the Sojourner Royer. 1 of 2 4/6/2001 11:31 AM # **Galileo Atmospheric Probe** **Classification:** Atmospheric probe spacecraft Mission: Investigate Jupiter's atmosphere **Features:** The Galileo Atmospheric Probe was released from the Galileo orbiter spacecraft in July 1995, about 100 days before arrival at Jupiter. Atmospheric entry took place on 7 December 1995 as the orbiter tracked the probe and recorded its data for later relay to Earth. Probe instruments investigated the chemical composition and the physical state of the atmosphere. The probe returned data for just under an hour before it was overcome by the pressure of Jupiter's atmosphere. **Stabilization:** Spin stabilized on trajectory from release until entry. Also see: Large detailed illustration of the Galileo Orbiter; Galileo Probe website; the Galileo Project website. # **Mars Balloon** **Classification:** Balloon package. **Mission:** Explore the Martian landscape. **Features:** This is a project The Planetary Society has been working to foster. It does not currently have a launch date. The balloon is designed to become buoyant enough to lift its instrumented guide rope when heated by the sun in the daytime and to sink when cooled at night, letting the guide rope contact the surface. Electronics are fitted within 24 interconnected, partially nested, articulated conical titanium segments, which make up the snake or guide rope. It carries various sensors and spectrometers, radar, data management system, transmitter, and batteries. It is intended to survive for ten Martian days and nights. **Classification:** Lander spacecraft. Mission: Survey Martian landscape. **Features:** The Viking Lander 1 spacecraft touched down on Mars in July 1976, followed by the Viking 2 Lander the following month. These automated scientific laboratories photographed their surroundings, and gathered data on the structure, surface, and atmosphere of the planet, and carried out an investigation into the possibility of past and present life forms. See also: the Viking Mission website. JPL followed the Ranger series of the 1960s, which crash-landed into the Moon, with the Surveyor spacecraft intended to soft-land on Earth's natural satellite. The series debuted on May 31, 1966, when Surveyor 1 was launched toward the Moon. The spacecraft's remarkable success at setting down on the lunar surface exactly as planned electrified the scientific community and sparked worldwide acclaim. Six more Surveyors were launched through January 7, 1968, with five successful landings in all. Surveyors 1, 3, 5 and 6 landed on maria -- or bays -- near the Moon's equator. Surveyor 7 landed on the highlands just north of Tycho's crater. The science instruments on the spacecraft varied from flight to flight, but included cameras, surface samplers and soil analyzers. In all, the Surveyors returned nearly 88,000 high-resolution pictures of the Moon's surface and performed the first soil analysis. Surveyor 3, which touched down in the Ocean of Storms, brought a
new robotic tool, the "scratcher arm," into use on the Moon. Apollo 12 astronauts Pete Conrad and Alan Bean landed just 156 meters (512 feet) away from Surveyor 3 three years later and removed the arm and other parts of the spacecraft so that scientists could study their condition after nearly four years of exposure to the space environment. - Seven Surveyor missions - Objective: Lunar soft landing - Luanch: 1-May 31, 1966; 2- September 20, 1966; 3- April 16, 1967; 4- july 14, 1967; 5- September 8, 1967; 6- November 6, 1967; 7- January 6, 1968 - Landing Dates: | Suveyor # | Date | Where | |-----------|--------------------|--------------------------| | 1 | June 1, 1966 | Ocean of Storms | | 2 | September 22, 1966 | crater Copernicus | | 3 | April 19, 1967 | Ocean of Storms | | 4 | | targeted for Sinus Medii | | 5 | September 10, 1967 | Sea of Tranquility | | 6 | November 9, 1967 | Sinus Medii | | 7 | January 9, 1968 | near crater Tycho | - Cost for all seven spacecraft: 426 million dollars - Number of Pictures returened by all seven: 87,674 - Project Manager: 1 & 2: Robert J. Parks 3 7: Howard H. Hagulund - Project Sceintist: Dr. Leonard Jaffe Go to: <u>JPL Home Page</u> <u>JPL Missions</u> # **Deep Space 2** Classification: Penetrator spacecraft. Mission: Analyze Martian subsurface environment. **Features:** Micro-instruments in the lower spacecraft (forebody) collect a sample of soil and analyze it for water content. Data from the forebody is sent through a flexible cable to the upper spacecraft (aftbody) at the surface; a telecommunications system on the aftbody relays data to the Mars Global Surveyor Spacecraft, operating in orbit on its mapping mission. The Deep Space 2 probes were designed to use only an aeroshell. By eliminating parachutes and rockets, the probes are lighter and less expensive, but also very hardy. Similar in weight to a lap-top computer, they were designed to survive a high-speed impact, and to operate successfully in extremely low temperatures, something conventional miniaturized electronics, and standard spacecraft, could never do. The two miniature probes, carrying ten experimental technologies each, piggybacked to the red planet with the Mars Polar Lander. They were to slam into Martian soil December 3, 1999. No communication was ever received from them, nor from the Mars Polar Lander. Stabilization: Spin stabilized during cruise. See also: DS2 Project website # Sojourner **Classification:** Rover spacecraft. **Mission:** Analyze Martian soil and individual rocks. **Features:** Sojourner weighs 11.0 kg on Earth and is about the size of a child's small wagon. It has six wheels and can move at speeds up to 0.6 meters per minute. The rover's wheels and suspension use a rocker-bogie system that is unique in that it does not use springs. Rather, its joints rotate and conform to the contour of the ground, providing the greatest degree of stability for traversing rocky, uneven surfaces. Sojourner performed a number of science experiments to evaluate its performance as a guide to the design of future rovers. These included conducting a series of experiments that validate technologies for an autonomous mobile vehicle; deploying an Alpha Proton X-ray Spectrometer on rocks and soil; and imaging the lander as part of an engineering assessment after landing. Also, Sojourner performed a number of specific technology experiments as a guide to hardware and software design for future rovers as well as assisting in verifying engineering capabilities for Mars rovers. **Stabilization:** Spin stabilized during cruise. See also: Mars Microrover website. GIF image 1442x1053 pixels http://www.jpl.nasa.gov/basics/bsf11-5a.gif #### Padio Science: The spececraft can transmit HGA Sunshade: Designed to protect The Galileo Spacecraft unmodulated, precise-frequency (near 2.3 GHz) the High-gain Antenna (when furled) microwave radio signals for experiments that directly from direct solar radiation while traveling Reflector Structure: yield information about rings and atmospheres, mass in the inner parts of the solar system. Part of the high-gain distribution, celestial mechanics, and general antenna which relativity. Agravitational wave search was conducted Science experiments are described in italics, and have thue connecting focuses and feeds during cruise. In vestgetons of the solar corona are lines. Engineering components are shown with red connecting lines the incoming and Low-gain Antenna 1 (LGA1): Used for communication conducted near superior conjunction ou taoina radio while the spacecraft is pointing generally toward Earth sionals. Padio signals are modulated to carry telemetry from the spacecraft to Earth at up to 100 bits per seconds, and commands from Earth to the spacecraft. In addition, High-gain Antenna (HGA): Consists of a these signals are used for precisely tracking the deployable reflector dish 4.8 m in diameter spacecraft's speed, distance, and angular position. (similar to those on the TDRSSearth Risema Wave Subsystem (PWS): Uses a dipole antenna satellites), and a reflector feed structure composed of two 10m grs phite-epoxy antennas at the tip of the magnetometer boom, and search coils in the HGA reflector supported above it. Designed to suport a communications rate of 134 k bps, the HGA Propellant Control Assembly (PCA): structure. Measures electrostatic and electromagnetic has not been able to unful due to an Valves, tu bing, pressurization and feed components of clasma waves in three dimensions. Spacecraft Spun Section: The anomaly, and is currently unusable. (Shown controls, and other propulsion system spun bushouses electronics and in its deployed configuration, which has not components are located on these two computers for attitude control, rectangular panels. command processing, and flight science data processing. Also houses components such as radios, data storage tage recorder, and Extreme Ultraviolet Spectrometer (EUV): On the support systems spun bus, is sensifive to we velengths of 50-170 nm. Investigates emmissions from the lo plasma torus Magnetometers: Sense magnetic fields in the spacecraft's mmediate en vironment, as well as distortons in those fields and auroral and airglow phenomena on Jupiter. Retro Propulsion Module (RPM): due to interactions with satellites or plasma. They are located as far as possible from magnetic interference aboard the The entire propulsion system is a single module provided by the spacecraft, on a fiberglass boom 10.9 m long. Star Scanner: Observes stars as the Federal Republic of Germany. It spacecraft spins, providing the primary reference for the Attitude Control consists of twelve 10N attitude control thrusters on two AIC thruster Computer which refers to an onboard booms, one central 400N thruster, star catalog for attitude determination four tanks of fuel and oxidizer, and (partly hidden in this view.) Energetic Particle Detector (EPD): Measures, in the two tanks of helium pressurant. The spacecraft's immediate environment the energy, composition, intensity, and angular distribution of charged HGS, RTGs, and Science Boom are Heavy Ion Counter (HIC): On top of Bay 2 In at visible also part of the spun section. Radioisotope Thermoelectric particles (protons to iron) having energies above 20 keV in this view) provides data on collisions with ionized Generators (BTGs): Produce a supriv and extending to about 10MeV per atomic mass unit. atoms (carbon through nickel) trapped in the Jovian of roughly 500 watts of electricity from magnetic field which may have the cotental to cause banks of thermocouples heated by the dam age to spacecraft. Spin Bearing Assembly (SBA): Connects the spun decay of radioactive material. and the despun sections of Raema Instrument (PLS): Measures the composition. Linear Boom Actuator (LBA): On the spacecraft. In addition to energy, temperature, density, and three-dimensional mechanical coupling, 48 sli p each RTG boom. Extends or contracts distribution and bulk motions of low-energy plasma (ions) in rings provide transfer of on command to allow minute Photometric Calibration Target (PCT): the spacecraft's immediate environment. Flange is from 1V power and low-rate data, and Provides a reference of known conditions for the adjustments in the RTG boom's angle, to 50k V, with 5-second tem coral resolution. rotary transformers provide a for minimizing spacecraft wobble. SSlinstrument, which it can view in a mirror (PCM) located just outboard on the boom. counting for high-rate data. An optical encoder provides A/C Thrusters: Two groups of size 10N attitude relative position information control thrusters are used for attitude and spin Dust Detector Subsystem (DDS): Daterminas hachanges and small adjustments to velocity. velocity, mass, charge, and flight direction of dust particles in interplanetary space and the Jovian system. Sensitive to Low-gain Antenna 2 (LGA2): Used Spacecraft Despun Section: The scan platform dust particle mass of 10 16 to 10 6g. Up to 100 particles for communication with the high-gain. per second can be detected. Scan Platform: Can be commanded to point its four optical, antenna furled, while the spacecraft is and its optical instruments remote-sensing instruments in specified directions. Instruments pointing generally a way from Earth. and the probe radio relay on scan platform include: RTG Shields: Shade the hot RTGs, a source of hardware are despun via the infrared energy, from the NIMS instrument to SBA so they can be pointed Temperature Control Louvers: Ultraviolet Spectrometer (UVS): On the scan datform Mechanical devices that open and close, crevent interfering with its observations. at their targets. The atmospheric probe is carried measures gases and aerosols in the Jovian atmosphere and automatically to control radiation of heat searches for complex molecules. Sensitive to wavelengths of from within the spacecraft. as part of the despun 1150 to 4300 An astrons. section Radio Relay
Hardware (RRH): Antenna. and electronics tracked and received data from the atmospheric probe during its short Solid State Imaging (SSI): 1500mm telescopic camera on operational life descending into Jupiter's the scan platform provides high-resolution images in visible light. The sensor is an activaly-cooled, tantalum-shielded atmosphere. These data were relayed to Earth via the LGA Charge-Couple Device (CCD) of 800 x 800 pixels. Color Scan Platform Sunshade: Protects the scan platform pictures are obtained by combining images taken through different filters. The instrument's best observations will detect instruments from direct sunlight during its inner solar system Helium Tank: Provides helium to flight. Also supports calibration targets for the NIMS and cressurize the fuel and oxidizer tanks objects as small as about 20 m PPR instruments. The PPR target is the cone-shaped feature pointing down near the edge Spacecraft Spin: The spun section Fuel and Oxidizer Tanks: Together, the four tums about the roll axis at roughly 3 RPM in its normal, dual-spin mode. fitanium-alloy tanks contained about 960kg of Near-Infrared Mapping Spectrometer (NIMS): On the scan gropellantatiaunch. The hypergolic fuel and platform, measures the thermal, compositional, and structural During the probe release maneuver oxidizer ignite spontaneously when brought nature of its targets. Sensitive to wavelengths of 0.7 to 5 and the Jupiter orbit insertion together in the RPM's attitude control thrusters man euver, the entire spacecraft and main engine. spined together at about 10 RPM Spin direction is indicated at left. Thermal Blanketing which covers much of the spacecraft for Photopolarimeter Padiometer (PPR): On the scan Atmospheric Probe: Descended into Jupiter's atmosphere to make in-situ measurements the purpose of temperature control and micrometeroid protection datform, combines a photometer, a polarimeter, and a holudes instruments to measure temperature, pressure, and deceleration; a neutral mass is not depicted (with the exception of the sunshades) radiometer to observe light in visi ble and infrared s pactromater determinas chemical composition; an interferomater determinas halium wa valangths. Provides data on atmospheric composition abundance; a neiphelometer observes cloud particles; a net-flux radiometer measures the and thermal energy distribution (not visible behind NIMS in difference between upward and down ward radiant energy. Also on board are an energetic particle detector, lightning, and radio-emission detectors. In addition, the radio link with the Orbiter provided Doppler wind data. The Probe separated from the Orbiter in July 1995, and successfully completed its mission on December 7, 1995. 1 of 1 4/6/2001 11:42 AM **Classification:** Observatory spacecraft. **Mission:** Observe a variety of targets in the infrared. Features: The Space InfraRed Telescope Facility (SIRTF) is a 950-kg space-borne, cryogenically-cooled infrared observatory capable of studying objects ranging from our Solar System to the distant reaches of the Universe. SIRTF is the final element in NASA's Great Observatories Program and an important scientific and technical cornerstone of the new Astronomical Search for Origins Program. SIRTF will launch July 2002 and occupy an Earth-trailing, heliocentric orbit. Its infrared instrument is cooled by 360 liters of liquid helium. **Stabilization:** 3-axis stabilized using reaction wheels. See also: SIRTF Project website. ## 9.01 What is the appropriate classification for the Voyager 1 sp | space | ecraft? | |--------|--| | | Flyby. | | | Orbiter. | | | Atmospheric. | | | Lander. | | | Rover. | | | Penetrator. | | | Observatory. | | | | | 9.02 \ | What is the appropriate classification for the Cassini spacecraft? | | | Flyby. | | | Orbiter. | | | Atmospheric. | | | Lander. | | | Rover. | | | Penetrator. | | | Observatory. | | | | | 9.03 \ | What is the appropriate classification for the Huygens spacecraft? | | | Flyby. | | | Orbiter. | | | Atmospheric. | | | Lander. | | | Rover. | | | Penetrator. | | | Observatory. | # 9.04 What is the appropriate classification for the Sojourner spacecraft? | | Flyby. Orbiter. Atmospheric. Lander. Rover. Penetrator. Observatory. | |------|--| | | 5 What is the appropriate classification for the Deep Impact acecraft? | | | Flyby. Orbiter. Atmospheric. Lander. Rover. Penetrator. Observatory. | | 9.00 | 6 What is the appropriate classification for the SIM spacecraft? | | | Flyby. Orbiter. Atmospheric. Lander. Rover. Penetrator. Observatory. | ## 9.07 What is the appropriate classification for the Surveyor spacecraft? Flyby. Orbiter. Atmospheric. Lander. Rover. Penetrator. Observatory. #### **SKIP ANSWER CHECK** | HOME GUIDE INC | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |--|--|---| | SECTION I ENVIRONMENT 1 The Solar System | SECTION II FLIGHT PROJECTS 7 Mission Inception | SECTION III FLIGHT OPERATIONS 14 Launch | | 2 Reference Systems | 8 Experiments | 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | <u>4 Trajectories</u> | 10 Telecommunications | 17 Extended Operations | | <u>5</u> Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | <u>6</u> Electromagnetics | 12 Science Instruments | | | | 13 Navigation | | #### **Objectives:** Upon completion of this chapter you will be aware of the major factors involved in communicating across interplanetary distances, including uplink, downlink, coherence, modulation, coding, and multiplexing. You will also be aware that additional coverage of this subject appears in different chapters. This chapter offers a broad view into some basic telecommunications issues, including both spacecraft and Earth-based components. Chapter 18 builds on the Deep Space Network's role in telecommunications, and more details of onboard spacecraft telecommunications equipment appear under Telecommunications Subsystems in Chapter 11. #### **Transmitters and Receivers** Chapter 6 showed that electromagnetic waves propagate any time there is a change in an electric current. Also, electromagnetic waves induce electric currents in conductors they encounter. The basis for a radio <u>transmitter</u>, then, is creating a changing electric current and letting the resulting waves propagate. The basis for a radio <u>receiver</u> is sensing the electric current induced by electromagnetic waves. Since the wires in a house carry electric current that changes typically at the rate of 60 Hz, it is easy to pick up a small induced 60 Hz current in any free conductor anywhere in the house. An earphone or an amplifier reveals an audible hum unless it's shielded. Practical radio transmitters and receivers operate on the same basis but at much higher frequencies than 60 Hz. With frequencies in the microwave region of the <u>spectrum</u> and higher, electromagnetic energy can easily be confined to a narrow beam, like a beam of light. ## **Signal Power** The KPFK FM radio broadcast transmitter on Mt. Wilson near Los Angeles has a power of 112 kW and a frequency of 90.7 MHz. The transmitter is no more than 15 km away from JPL. Your automobile radio receiver has a simple antenna to pick up the induced signal. By comparison, a spacecraft's transmitter may have no more than 20 W of radiating power, but it can bridge distances measured in tens of billions of kilometers. How can that be? One part of the solution is to employ microwave frequencies and concentrate all available power into a narrow beam instead of broadcasting it in all directions. A spacecraft typically does this using a <u>Cassegrain</u> dish antenna, perhaps a few meters in diameter, trained precisely toward Earth. Another component to the solution is the fact that there are no significant sources of noise in interplanetary space at the spacecraft's specific frequency. The spacecraft is the *only* thing that can be detected at that frequency (unless it is happens to be close to the sun as seen in the sky). The remainder of the solution is provided by the Deep Space Network's large aperture Cassegrain reflectors, cryogenically-cooled low-noise amplifiers, sophisticated receivers, and data coding and error-correction schemes. These systems can collect, detect, lock onto, and amplify a vanishingly small signal that reaches Earth from the spacecraft and can extract data from the signal virtually without errors. ## **Uplink and Downlink** The radio signal transmitted from Earth to a spacecraft is known as <u>uplink</u>. The transmission from spacecraft to Earth is <u>downlink</u>. Uplink or downlink may consist of a pure RF tone, called a <u>carrier</u>. Such a pure carrier is useful in many ways, including radio science experiments. On the other hand, carriers may be <u>modulated</u> to carry information in each direction (modulation is detailed later in this chapter). Commands may be transmitted to a spacecraft by modulating the uplink carrier. Telemetry containing science and engineering data may be transmitted to Earth by modulating the downlink carrier. ## **Phase Lock** When your FM receiver tunes in a broadcast station, it locks onto the signal using an internal circuit called a phase-locked loop, <u>PLL</u>. (The PLL combines a voltage-controlled oscillator and a phase comparator designed so the oscillator tracks the phase of an incoming signal.) PLLs are used in spacecraft and DSN telecommunications receivers, and so it is common to speak of a spacecraft's receiver "locked" onto an uplink and a DSN receiver "locked" onto a downlink. (Telemetry systems achieve "lock" on data, as described later, but in a way completely different from a receiver phase-locked loop.) ## One-way, Two-way, Three-way When
you're only receiving a downlink from a spacecraft, the communication is called <u>one-way</u>. When you're sending an uplink that the spacecraft is receiving at the same time a downlink is being received at Earth, the communications mode is called <u>two-way</u>. There are finer points. The communications mode is still called one-way even when an uplink is being received by the spacecraft, but the full round-trip light time hasn't yet elapsed. Picture it this way: You're getting downlink and watching telemetry that shows the state of the spacecraft's own receiver. As long as you see the spacecraft's receiver is *not* receiving the uplink, you're one-way. Once you see the spacecraft's receiver lock onto the uplink, you're two-way. <u>Three-way</u> is when you're receiving a downlink on one station, but a different station is providing the uplink. Again, RTLT must have elapsed since the other station's uplink began. If you're watching telemetry from the spacecraft coming in over a DSN station in Australia and you see the spacecraft's receiver is still in lock on the uplink provided by a DSN station at Goldstone, California, you're three-way. #### **Coherence** Aside from the information modulated on the downlink as telemetry, the carrier itself is used for tracking and navigating the spacecraft, as well as for carrying out some types of science experiments such as radio science or gravity field mapping. For each of these uses, an extremely stable downlink frequency is required, so that Doppler shifts on the order of fractions of a Hertz may be detected out of many GHz over periods of many hours. But it would be impossible for any spacecraft to carry the massive equipment required to maintain such frequency stability. Spacecraft transmitters suffer wide temperature changes which cause frequency drift. The solution is to have the spacecraft generate a downlink that is coherent to the uplink it receives. Down in the basement of each DSN complex, there looms a <u>hydrogen-maser</u>-based <u>frequency standard</u> in an environmentally controlled room. This maser is used as a reference for generating an extremely stable uplink frequency for the spacecraft to use, in turn, to generate its coherent downlink. (It also supplies a signal to the master clock that counts cycles and distributes UTC time.) Its stability is equivalent to the gain or loss of 1 second in 30 million years. Once the spacecraft receives the stable uplink frequency, it multiplies that frequency by a constant and uses that value to generate its downlink frequency. This way, the downlink enjoys all the extraordinarily high stability in frequency that belongs to the massive, sensitive equipment that generated the uplink. It can thus be used for precisely tracking the spacecraft and for carrying out precision science experiments. The spacecraft also carries a low-mass oscillator to use as a reference in generating its downlink for periods when an uplink is not available, but it is not highly stable since its output frequency is affected by temperature variations. Some spacecraft carry an Ultra-Stable Oscillator (USO), discussed further in Chapter 16. But even the USO has nowhere near the ideal stability of a coherent downlink. Because of the stringent frequency requirements for spacecraft operations, JPL stays at the <u>forefront</u> of frequency and timing standards technology. Advances are being undertaken that may replace the hydrogen-maser-based system early in the 21st century. ## **Data Glitch Going Two-way** Consider a DSN station in lock with a spacecraft's one-way downlink. Now have that station send an uplink for the spacecraft to lock onto. When the spacecraft sees the uplink, it abandons the internal frequency reference it was using to generate its downlink, and instead it uses the uplink to generate a new downlink frequency. That new downlink frequency will be a lot more stable, but it is usually a <u>different</u> frequency. So when the new coherent downlink reaches the DSN station a round-trip light time after the DSN's transmitter goes on, the station's receiver drops lock on the old downlink, because it isn't there at the same frequency anymore. The DSN receiver has to change frequency and lock on the new and different downlink. Of course when the DSN receiver goes out of lock, the telemetry system also loses lock and the data stream stops. It's as if you're tuned in to the KPFK FM radio broadcast at 90.7 MHz, and suddenly it decides to change to 90.5 MHz. You have to tune your radio to the new frequency, and you might miss some of that fascinating interview you were following! The DSN station knows the exact time a coherent downlink will arrive, and will waste no time looking for the new frequency. It may be common, however, to experience a few minutes with no data while the lockup proceeds, so it is wise to plan for this outage in the early stages of determining what the content of the downlink will be. You don't want to sequence your spacecraft to be downlinking something important at the time it changes to 2-way coherent. In order to avoid this data glitch when going from two-way coherent to three-way coherent, the two DSN stations coordinate closely to provide an <u>uplink handover</u>. Picture a spacecraft setting at the western horizon as seen from the Goldstone DSN station. At the same time, the spacecraft is rising on the eastern horizon as seen from the Australian station. At a predetermined time, the Australian station turns on its transmitter, already tuned so it appears to the spacecraft as the same frequency as the uplink it is already receiving (taking into consideration the Doppler shifts induced as the turning Earth moves Australia towards, and Goldstone away from the spacecraft). Then, two seconds later, the Goldstone station turns off its transmitter. Nominally, the spacecraft will not lose lock on the uplink, and so its coherent downlink will not undergo any change in frequency. Telemetry and tracking data continue uninterrupted! #### TWNC On Most spacecraft may also invoke a mode that does not use the uplink frequency as a reference for generating downlink. Instead, the spacecraft uses its onboard oscillator as a reference for generating its downlink frequency. This mode is known as <u>Two-Way Non-Coherent</u> (TWNC, pronounced "twink"). When TWNC is on, the downlink is always non-coherent, even if the spacecraft sees an uplink. Why have a two-way non-coherent capability? Mostly for radio science (RS) experiments. While RS usually needs the most stable coherent downlink available (referenced to extremely stable ground equipment), they can't always have one. Atmospheric occultation experiments provide an example. When a spacecraft goes behind a planet's atmosphere, the uplink gets corrupted before it gets to the spacecraft, adding to noise in the downlink. The solution is to turn coherency off (TWNC on), and reference a well known and calibrated spacecraft-generated downlink as a second-best source. Regularly scheduled non-coherent periods during cruise provide calibration data in support of non-coherent RS experiments. Recall that "two-way" and "three-way" mean there is an uplink and there is a downlink, and these terms don't indicate whether the spacecraft's downlink is coherent to a station's uplink or not. However, in common usage, operations people often say "two-way" to mean "coherent." This is unfortunate because it can lead to confusion once in a while. Correctly stated, a spacecraft's downlink is coherent when it is two-way or three-way with TWNC off. # Modulation and Demodulation, Carrier and Subcarrier To modulate means to modify or temper in some way. For example, consider a pure-tone carrier of, say, 3 GHz. If you were to quickly turn this tone off and on at the rate of a thousand times a second, we could say you are <u>modulating</u> the carrier with a frequency of 1 kHz using on-off keying. Spacecraft and DSN carrier signals are modulated not by on-off keying as in the above example, but by shifting the waveform's phase slightly at a carefully clocked rate. This is <u>phase modulation</u>. You can phase-modulate the carrier <u>directly</u> with data. Another scheme is to phase-modulate the carrier with a constant frequency called a <u>subcarrier</u> which in turn carries the data symbols. In the on-off keying example, we could really call the 1-kHz modulation a subcarrier in an attempt to simplify the explanation. Now, to stretch the example a bit, you might decide to place data onto this 1-kHz "subcarrier" by varying the timing of some of the on-off transitions. The same kind of schemes that put data on the downlink are also used on the uplink to carry commands or ranging symbols for navigation. <u>Ranging</u> and other navigation topics appear in Chapter 13. To illustrate the subcarrier scheme, let's say Cassini's X-band downlink carrier is 8.4 GHz. That's pretty close. Cassini's transmitter can impose a modulation of 360 kHz onto that carrier to create a subcarrier. Then, the data can be modulated onto the 360 kHz subcarrier by shifting its phase. In practice, Cassini can modulate data directly onto its carrier, or put it into either a 360 kHz subcarrier or a 22.5 kHz subcarrier. Which scheme is selected depends on the data rates to be used and other factors. MI=51.6° The amount of phase shift used to modulate a carrier (or a subcarrier) is called modulation index (or mod index, MI). MI is measured in degrees or radians (see the <u>illustration</u> in Chapter 6). The greater the mod index, the "louder" the modulation. Various MI values are used for different conditions. <u>Demodulation</u> is the reverse. It's the process of capturing data symbols from the carrier or subcarrier. It involves detecting the individual phase shifts in the carrier and subcarrier if present, and decoding them into digital data for further processing. The same processes of modulation and demodulation are used commonly
with Earth-based computer systems and fax machines transmitting data back and forth over a telephone line. They use a <u>modem</u>, short for modulator / demodulator. Computer and fax modems use that familiar audio frequency carrier because the telephone system can readily handle it. Modulation can be seen as power sharing. If there is no modulation, all the power is in the carrier. As you increase modulation, you put more power in the data and less in the carrier but it always adds up to the same amount of power. You decrease carrier power when you add modulation for telemetry, and decrease it again when you add modulation for ranging. When operating near the limits of reception, it may be necessary to choose between telemetry modulation and ranging modulation to preserve a useable downlink, and to choose between ranging modulation and command modulation to preserve a useable uplink. #### **Beacons** As part of its new technology, the <u>Deep Space 1</u> spacecraft has demonstrated <u>beacon</u> <u>monitor</u> operations, a mode which may become more widespread as spacecraft intelligence and capabilities increase. In beacon monitor operations, an on-board <u>data summarization system</u> determines the overall spacecraft health. Then it selects one of 4 subcarrier tones to place on its downlink carrier to indicate whether, or how urgently, it needs contact using the Deep Space Network's larger antennas. These subcarrier tones are quickly and easily detected with low cost receivers and small antennas, so monitoring a spacecraft that uses this technology can free up precious resources of the Deep Space Network. Each beacon tone is like a single note on a musical instrument. One tone might mean that the spacecraft is fine, and it does not need contact with human operators. Another might mean that contact is needed sometime within a month, while a third could mean that contact should be established within a week so that data can be downlinked. The last is a red alert, indicating the spacecraft needs immediate contact because of some problem. For a closer look at the beacon signal received from Deep Space 1, with some notes explaining the display, click the image at right. ## Symbols and Bits and Coding For a beginner's discussion of bits (binary digits), see this section of The Space Place. Generally, modern spacecraft don't place data bits, as such, onto the carrier or subcarrier. They put <u>symbols</u> there instead. A symbol is a wiggle (or a non-wiggle) in the phase of the carrier or subcarrier. A number of symbols make up a <u>bit</u>. How many depends on the coding scheme being used. Coding is a theoretical field using logic and mathematics to help ensure error-free data transmission. One coding scheme most interplanetary spacecraft use is a forward error correction (FEC) scheme called <u>convolutional coding</u> with Viterbi decoding. Another kind is <u>Reed-Solomon</u>, the same coding your CD player uses to ensure error-free music. Reed-Solomon coding adds bits, but it doesn't affect the ratio of symbols to bits; it's generally imposed prior to the convolutional code. The flavor of convolutional coding that Cassini often uses (k=15, r=1/6) places six symbols on the downlink (carrier or subcarrier) for every bit of data. Thus Cassini's downlink data rate of 82,950 bps requires a symbol rate of 497,700 symbols per second. A recent advance in coding called <u>turbo code</u> is being used on some new missions. About those phase wigglings... Two schemes are commonly in use for putting them on the downlink or uplink: - **Bi-phase**, or Bi-Ø, is the format normally used for putting data directly on a carrier. In this scheme, the phase has to shift from one offset to another, across the zero point, to represent a symbol. The timing of the shift in relation to a symbol time (clock) determines whether the symbol is a "1" or a "0." This scheme is also called Manchester coding. - NRZ or non-return-to-zero, is the format normally used for putting data onto a subcarrier. In this scheme, a phase deviation is held for the duration of a symbol time (clock) to represent a logical "1." To represent a logical "0", the opposite phase deviation is held for a symbol time. If the symbols are "1110," the first shift is held for three symbol times without returning to zero. In either case, a number of symbols must be received before a data bit can be recognized, the number depending on what convolutional coding parameters are in use. ## Multiplexing The subjects that follow are more properly described as issues of <u>telemetry</u>, rather than issues of basic telecommunications, which have been the focus untill now. Not every subsystem aboard a spacecraft can transmit its data at the same time, so the data is <u>multiplexed</u>. Cassini has over 13,000 different measurements such as pressures, temperatures, computer states, microswitch positions, science data streams, and so on. To ensure that all necessary data is received, and that important measurements are received more frequently than less important ones, spacecraft are designed to use one of two different multiplexing schemes, described below. Both methods make use of a data structure called a <u>frame</u>. The spacecraft puts a known bit pattern into the data stream to separate the stream into frames. This bit pattern is called a PN (Pseudo-Noise) code, or a sync marker. The ground system searches for this pattern, and identifies all data in between instances of this pattern as a frame. The two multiplexing methods differ in how the spacecraft organizes the bits within the frames, between the sync markers: ■ In TDM, or Time Division Multiplexed data, each measurement is commutated (picked up and selectively placed) into a known location in the frame. In a simplified example, it might be agreed that right after the PN code is sent, the imaging system sends 1024 bits of its data, then the propulsion system sends 512 bits, and then the radar system sends 2048 bits. Next comes the PN code marking the start of a new frame. On the ground you'd filter through the data till you recognize the PN code, then start counting bits so you can decommutate or separate out the data. The first k is imaging, the next half-k is propulsion, and so on. However, this arrangement means that, for instance, radar always gets the same number of bits, even if the instrument has no data to transmit, which can be wasteful. ■ Rather than TDM, newer spacecraft use <u>packetizing</u> on both uplink and downlink in accordance with The Consultative Committee for Space Data Systems (<u>CCSDS</u>). In the packetizing scheme for downlink, a burst of data called a <u>packet</u> comes from one instrument or subsystem, followed by a packet from another, and so on, in <u>no specific order</u>. The packets are packed into the frame tightly, regardless of where each packet starts. Each packet carries an identification of the measurements it contains, the packet's size, etc., so the ground data system can recognize it and handle it properly. Data within a packet normally contains many different commutated measurements from the subsystem or instrument sending the packet. The spacecraft gathers packets (or perhaps parts of packets, depending on their sizes) into frames for downlink, marked with PN code as described above. Packetizing schemes adhere to the International Standards Organization (ISO)'s Open Systems Interconnection (OSI) protocol suite, which recommends how computers of various makes and models can communicate. The ISO OSI is distance independent, and holds for spacecraft light-hours away as well as between workstations in the same office. Demultiplexing is done at the frame level for TDM, and at the packet level for packet data. In both TDM and packets, the data carries a numeric key to determine which of several predetermined sets of measurements is present. On the ground, the key determines which <u>decom map</u> (decommutation map) will be used to separate out each measurement into its "channel" described below. ## **Telemetry Lock** Once a DSN receiver has locked onto a downlink, symbols are decoded into bits, and the bits go to a telemetry system. Once the telemetry system recognizes frames reliably, it is said to be in "lock" on the data. The data flow is discussed further in Chapter 18; the intent here is to highlight the difference between receiver lock and telemetry lock. ## Channelization Once all the measurements are identified in the ground system, they are typically displayed as <u>channels</u>. For example, - Channel T-1234 always shows the temperature of the hydrazine tank. - Channel A-1234 always shows the speed of reaction wheel number three. - Channel E-1234 always shows the main bus voltage. - Channel C-1234 always shows the state of the command decoder. - Channel P-1234 always shows the pressure in the oxidizer tank. - And so on. These are hypothetical channel identifications, of course. Each spacecraft identifies them differently and may have thousands of different measurements. But the value of each specific measurement will always appear in the same place, in its associated <u>channel</u>. This scheme makes it possible to arrange sets of related data within separate windows on your computer screen. Some data is typically not assigned channels at all, but delivered "raw" instead. Such raw data may include imaging data streams or data from other science instruments. In addition to telemetry measurements from the spacecraft, <u>monitor</u> data is available from the Deep Space Network to show the performance of its various subsystems, for example antenna elevation or receiver lock status. Monitor channels are typically identified with the letter M, such as Channel M-1234. For more detailed information on telemetry processing, see <u>Betsy Wilson's tutorial</u> on the Advanced Multimission Operations System which is used within JPL's Telecommunications and Mission Operations
Directorate. | HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS | |---------|----------|-------------|-------------------|----------------------------|-------| | 1101112 | <u> </u> | 11 (12 1311 | <u>OZOBBITITI</u> | CT (TTD OT T) IET ID OT LE | | #### **SECTION I** **ENVIRONMENT** 1 The Solar System 2 Reference Systems **3** Gravity & Mechanics **4** Trajectories **5** Planetary Orbits **6** Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments **9** S/C Classification **10** Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation #### SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network #### 10.01 If a spacecraft is two-way, it means... it is coherent. it is non-coherent. it is receiving an uplink. you are receiving a downlink. a second station is receiving a downlink. #### 10.02 If a spacecraft is three-way, it means... it is coherent. it is non-coherent. it is receiving an uplink. a second station is receiving a downlink. ### 10.03 What is/are the primary benefit/s of a coherent downlink? precision Doppler. accurate telemetry. clean radio science. error-free commanding. ## 10.04 If TWNC is on, a spacecraft's downlink cannot be... one-way. two-way. three-way. non-coherent. coherent. ## 10.05 A spacecraft can modulate telemetry symbols onto its... uplink carrier. downlink carrier. downlink subcarrier. uplink subcarrier. beacon. #### **SKIP ANSWER CHECK** | HOME GUIDE IND | EX GLOSSARY UNITS | S OF MEASURE LINKS | |--|--|---| | SECTION I ENVIRONMENT 1 The Solar System | SECTION II FLIGHT PROJECTS 7 Mission Inception | SECTION III FLIGHT OPERATIONS 14 Launch | | 2 Reference Systems | 8 Experiments | 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | <u>4 Trajectories</u> | 10 Telecommunications | 17 Extended Operations | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | 6 Electromagnetics | 12 Science Instruments | | | _ | 13 Navigation | | #### **Objectives:** Upon completion of this chapter you will be able to describe the role of typical spacecraft subsystems: structural, thermal, mechanical devices, data handling, attitude and articulation control, telecommunications, electrical power and distribution, and propulsion. You will be able to list advanced technologies being considered for use on future spacecraft. ## Systems, Subsystems, and Assemblies One might expect a <u>system</u> to comprise <u>subsystems</u>, and subsystems to contain <u>assemblies</u>. For example, a spacecraft, or <u>flight system</u>, might contain a dozen subsystems including an attitude control subsystem, which might contain dozens of assemblies including three or four reaction wheel assemblies. But all too often *system* and *subsystem* seem arbitrarily used. In some usage a system may comprise subsystems both aboard a spacecraft and on the ground, for example a telecommunications system with transmitter and receiver subsystems on both spacecraft and Earth. In other usage, as if to ensure permanent cor Idealized Hierarchy spacecraft and Earth. In other usage, as if to ensure permanent confusion of terms, frequently an instrument is named a subsystem, but it may contain lens *systems*, and so on. Individual spacecraft can be very different from one another, and they display different approaches to solving similar problems. Newer spacecraft are smaller and less massive than their predecessors, yet there are common functions carried out by spacecraft regardless how massive or miniature. Not all classifications of spacecraft have the same subsystems, though. An atmospheric probe spacecraft, for example, may lack propulsion and attitude control subsystems. The discussions in this chapter mainly address subsystems that satisfy the requirements typical of complex flyby or orbiter class spacecraft, and in this way cover most simpler classes of spacecraft as well. Subsystems discussed in this chapter include: - Structure Subsystem - Data Handling Subsystem - Attitude & Articulation Control Subsystem - **■** Telecommunications Subsystem - Electrical Power Subsystem - **■** Temperature Control Subsystem - Propulsion Subsystem - Mechanical Devices Subsystem - Other Subsystems #### **A Convenient Illustration** You may find it helpful to have this reference diagram available in a separate window as you proceed through this chapter and the next. The large (140 kbyte) illustration calls upon the Galileo Jupiter orbiter and atmospheric probe spacecraft to show many components of the typical on-board systems, subsystems, and assemblies discussed in the text. In the illustration, red lines point to engineering subsystems and assemblies, connecting them with explanatory paragraphs written in plain type font. Blue lines point to science instruments, connecting them with explanatory paragraphs written in *italic* font within the illustration. To bring up a separate window containing the large illustration, click the thumbnail image. ## **Structure Subsystem** The Structure subsystem provides overall mechanical integrity of the spacecraft. It must ensure that all spacecraft components are supported, and that they can withstand handling and launch loads as well as flight in freefall and during operation of propulsive components. The spacecraft <u>bus</u> is a major part of a spacecraft's structure subsystem. It provides a place to attach components internally and externally, and to house delicate modules requiring the protection of an environment with a measure of thermal and mechanical stability. It can provide an integral card chassis for supporting circuit boards of radio equipment, data recorders, and computers. It supports gyroscopes, reaction wheels, cables, plumbing, and many other components. The bus also influences the basic geometry of the spacecraft, and it provides the STARDUST SPACECRAFT BUS attachment points for other parts of the structure subsystem such as booms, antennas, and scan platforms. It also provides points that allow holding and moving the spacecraft during construction, testing, transportation, and launch. A magnetometer boom appendage is typically the longest component of the structure subsystem on a spacecraft, although since it is deployable, it may fall under the aegis of the mechanical devices subsystem discussed below. Since magnetometers (discussed in Chapter 12) are sensitive to electric currents near the spacecraft bus, they are placed at the greatest practical distance from them on a boom. The Voyager magnetometers are mounted 6 and 13 meters out the boom from the spacecraft bus. At launch, the mag boom, constructed of thin, non-metallic rods, is typically collapsed very compactly into a protective canister. Once deployed in flight, it cannot be retracted. ## **Data Handling Subsystems** Some of today's science instruments, or other subsystems, may easily have more embedded computing power than an entire Voyager spacecraft has. But there is usually one computer identified as the "spacecraft central" computer responsible for overall management of a spacecraft's activity. It is typically the same one which maintains timing, interprets commands from Earth, collects, processes, and formats the telemetry data to be returned to Earth, and manages high-level fault protection and safing routines. On some spacecraft, this computer is referred to as the command and data subsystem (CDS). For convenience, that term will be used here, recognizing that other names may apply to similar subsystems or sets of subsystems which accomplish some or all of the same tasks. #### ■ Sequence Storage A portion of the CDS memory is managed as storage space for command sequences and programs uplinked from Earth that control the spacecraft's activities over a period of time. After use, these sequences and programs are repeatedly overwritten with new ones to maintain control of the spacecraft over long periods of time. These sequence loads are typically created by the project's planning and sequencing teams by negotiating and incorporating inputs from the spacecraft team, the science teams, and others. ### ■ Spacecraft Clock As mentioned in Chapter 2, the spacecraft clock (SCLK, pronounced "sklock") is typically a counter maintained by CDS. It meters the passing of time during the life of the spacecraft. Nearly all activity within the spacecraft systems is regulated by the SCLK (an exception is realtime commands). The spacecraft clock may be very simple, incrementing every second and bumping its value up by one, or it may be more complex, with several main and subordinate fields that can track and control activity at multiple granularities. The SCLK on the Ulysses spacecraft, for instance, was designed to increment its single field by one count every two seconds. The Galileo and Magellan clocks, on the other hand, were designed as four fields of increasing resolution. Many types of commands uplinked to the spacecraft are set to begin execution at specific SCLK counts. In telemetry, SCLK counts that indicate data creation time mark engineering and science data whether it goes to the onboard storage device, or directly onto the downlink. The presence of SCLK in telemetry facilitates processing, storage, retrieval, distribution, and analysis. | EVENT DESCRIPTION | SCET | S/C CLOCK | |---|--------------|----------------| | EXECUTE BOTH CAMERAS COMMAND ID: 450 | 335 13:28:45 | 1354282800:204 | | EXECUTE UV IMAGING SPECTROMETER OBSERVATION | 335 13:28:45 | 1354282800:207 | Excerpt from Cassini Sequence of Events during Jupiter phase December 2000. SCLK values for two commands appears next to their equivalent SCET times. #### ■ Telemetry Packaging and Coding Telemetry data from science instruments
and engineering subsystems is picked up by the CDS, where it is assembled into packages appropriate to the telemetry frame or packet scheme in use. If the spacecraft is downlinking data in real time, the packet or frame may be sent to the spacecraft's transmitter. Otherwise, telemetry may be written to a mass storage device until transmission is feasible. Spacecraft engineering or health data is composed of a wide range of measurements, from switch positions and subsystem states to voltages, temperatures, and pressures. Thousands of measurements are collected and inserted into the telemetry stream. CDS's capability to alter the telemetry format and content accommodates various mission phases or downlink rates, as well as to enable diagnosis of anomalies. In the case of an anomaly, it may be necessary to temporarily terminate the collection of science data and to return only an enriched or specialized stream of engineering and housekeeping data. CASSINI CDS MAIN COMPUTER Some data processing may take place within the CDS before science and engineering data are stored or transmitted. CDS may apply data compression methods to reduce the number of bits to be transmitted, and apply one or more encoding schemes to reduce data loss as described in Chapter 10. ### Data Storage It is rare for a mission to be provided the constant support of real-time tracking. Also, a spacecraft may spend time with its antenna off Earth-point while gathering data. For these reasons, spacecraft data handling subsystems are usually provided with one or more data storage devices such as tape recorders, or the solid-state equivalent of tape recorders which maintain large quantities of data in banks of RAM. The storage devices can be commanded to play out their stored data for downlink when DSN resources are available, and then to overwrite the old data with new. #### ■ Fault Protection and Safing A robotic space flight system must have the intelligence and autonomy to monitor and control itself to some degree throughout its useful life at a great distance from Earth. Though ground teams also monitor and control the spacecraft, light time physically prohibits the ability to respond immediately to anomalies on the spacecraft. Tightly constrained tracking schedules also limit the ability to detect problems and respond. Fault protection (FP) algorithms, which normally run in one or more of the spacecraft's subsystems, therefore must ensure the ability to mitigate the impact of a mishap, and to re-establish the spacecraft's ability to contact Earth if an anomaly has caused an interruption in communications. A spacecraft may have many different FP algorithms running simultaneously with the ability to request CDS to take action. <u>Safing</u> is one response that FP routines can request. Safing involves shutting down or reconfiguring components to prevent damage either from within or from the external environment. Another internal response may be an automated, methodical search to re-establish Earth-pointing and regain communications. This routine may or may not be a normal part of safing. While entrance into safing may temporarily disrupt ongoing science observations and require the flight team to perform additional work, safing provides strong and reliable protection for the spacecraft and its mission. Usually a minimal set of safing-like instructions is also installed in ROM (it was contained in 1 kbyte on Magellan) where it can hide from even the worst imaginable scenarios of runaway program execution or power outage. More intricate safing routines (also called "contingency modes") and FP routines typically reside in CDS RAM, as well as parameters for use by the ROM code, where they can be updated as necessary during the life of the mission. One example of a fault-protection routine is the <u>Command-Loss Timer</u>, CLT. This is a software timer running in CDS that is reset to a predetermined value, for example a week, every time the spacecraft receives a command from Earth. If the timer decrements all the way to zero, the assumption is that the spacecraft has experienced a failure in its receiver or other components in the command string. The CLT fault protection response issues commands for actions such as swapping to redundant hardware in an attempt to re-establish the ability to receive commands. | HOME GUIDE IN | DEX GLOSSARY UN | ITS OF MEASURE LINKS | |---------------------------|------------------------|-------------------------------| | SECTION I | SECTION II | SECTION III | | ENVIRONMENT | FLIGHT PROJECTS | FLIGHT OPERATIONS | | 1 The Solar System | 7 Mission Inception | 14 Launch | | 2 Reference Systems | <u>8</u> Experiments | <u>15 Cruise</u> | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | <u>4 Trajectories</u> | 10 Telecommunications | <u>17 Extended Operations</u> | | <u>5</u> Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | <u>6</u> Electromagnetics | 12 Science Instruments | | | _ | 13 Navigation | | ## **Attitude and Articulation Control Subsystems (AACS)** The path a rocket or guided missile flies is directly influenced by its attitude, that is its orientation in space. During the atmospheric portion of flight, fins may deflect to steer a missile. Outside the atmosphere, changing the direction of thrust by articulating exhaust nozzles or changing the rocket's attitude influences its flight path. Thus the term guidance and control has been associated with attitude control during the powered ascent phase of a spacecraft's mission. After a few minutes' launch, though, a spacecraft may face a mission of many years in freefall during which its attitude has no relation to guidance except for infrequent propulsive maneuvers. A spacecraft's attitude must be stabilized and controlled so that its high-gain antenna may be accurately pointed to Earth, so that onboard experiments may accomplish precise pointing for accurate collection and subsequent interpretation of data, so that the heating and cooling effects of sunlight and shadow may be used intelligently for thermal control, and also for guidance: short propulsive maneuvers must be executed in the right direction. Spin: Stabilization can be accomplished by setting the vehicle spinning, like the Pioneer 10 and 11 spacecraft in the outer solar system, Lunar Prospector, and the Galileo Jupiter orbiter spacecraft, and its atmospheric probe. The gyroscopic action of the rotating spacecraft mass is the stabilizing mechanism. Propulsion system thrusters are fired only occasionally to make desired changes in the spin-stabilized attitude. In the case of Galileo's Jupiter atmospheric probe, and the Huygens Titan probe, the proper attitude and spin are imparted by the mother ship. SPIN-STABILIZED LUNAR PROSPECTOR **3-Axis:** Alternatively, a spacecraft may be designed for active three-axis stabilization. One method is to use small propulsion-system <u>thrusters</u> to incessantly nudge the spacecraft back and forth within a deadband of allowed attitude error. Voyagers 1 and 2 have been doing that since 1977, and have used up only about half their 100 kg of propellant as of December 2000. Thrusters are also referred to as <u>mass-expulsion control</u> systems, MEC, or <u>reaction-control systems</u>, RCS. Another method is to use electrically-powered <u>reaction wheels</u>, also called <u>momentum wheels</u>. Massive wheels are mounted in three orthogonal axes aboard the spacecraft. They provide a means to trade angular momentum back and forth between spacecraft and wheels. To rotate the vehicle in one direction, you spin up the proper wheel in the opposite direction. To rotate the vehicle back, you slow down the wheel. Excess momentum that builds up in the system due to external torques, caused for example by solar photon pressure or gravity gradient, must be occasionally removed from the system by applying torque to the spacecraft and allowing the wheels to acquire a desired speed under computer control. This is done during maneuvers called momentum desaturation, (desat), or momentum unload maneuvers. Many spacecraft use a system of thrusters to apply the torque for desats. The Hubble Space Telescope, though, has sensitive optics that could be contaminated by thruster exhaust, so it used magnetic torquers that interact with the Earth's magnetic field for its desat maneuvers. 3-AXIS STABILIZED CASSINI SPACECRAFT There are advantages and disadvantages to both spin stabilization and 3-axis stabilization. Spin-stabilized craft provide a continuous sweeping motion that is desirable for fields and particles instruments, as well as any optical scanning instruments, but they may require complicated systems to de-spin antennas or optical instruments that must be pointed at targets for science observations or communications with Earth. Three-axis controlled craft can point optical instruments and antennas without having to de-spin them, but they may have to carry out special and infrequent rotating maneuvers to best utilize their fields and particle instruments. If thrusters are used, optical observations such as imaging must designed knowing that the spacecraft is always slowly rocking back and forth, and not always exactly predictably. Reaction wheels provide a much steadier spacecraft from which to make observations, but they add mass to the spacecraft, and require frequent momentum desaturation maneuvers. No matter what choices have been made, spin or 3-axis stabilization, thrusters or reaction wheels, the task of attitude and articulation control falls to an AACS computer running highly evolved, sophisticated software. Articulation: Some spacecraft have components that require articulation. Voyager and Galileo, for example, have scan platforms for pointing optical instruments at their targets largely independently of spacecraft orientation. Many spacecraft, such as Mars orbiters, have solar panels which must track the sun
so they can provide electrical power to the spacecraft. Knowing where to point a solar panel or scan platform, that is how to articulate it, requires knowledge of the spacecraft's attitude. Since AACS keeps track of the spacecraft's attitude, the sun's location, and Earth's location, it can compute the proper direction to point the appendages. It logically falls to one subsystem, then, to manage both attitude and articulation. The name AACS has been carried over to craft like Cassini even though it has no scan platforms or solar panels to articulate (one spare reaction wheel, though, *can* be articulated in case of failure of another). Those of Cassini's fields and particles science instruments which have parts that can rotate or otherwise articulate are under control of the instrument subsystem rather than AACS. Celestial Reference: Which way is "up"? Many different devices may be chosen to provide attitude reference by observing celestial bodies: star trackers, star scanners, solar trackers, sun sensors, and planetary limb sensors and trackers. Many of today's celestial reference devices have a great deal of intelligence, for example automated recognition of observed objects based on built-in star catalogs. Voyager's AACS takes input from a sun sensor for yaw and pitch reference. Its roll reference comes from a star tracker trained continuously on a single bright star at right angles to sunpoint. Galileo takes its references from a star scanner which rotates with the spinning part of the spacecraft, and a sun sensor is available for use in maneuvers. Magellan used a star scanner to take a fix on two bright stars during a special maneuver once every orbit or two, and its solar panels each had a sun sensor. CASSINI'S STELLAR REFERENCE UNIT Click image for Cassini AACS info. Inertial Reference: Celestial references are not always available or appropriate. Gyroscopes of some kind are typically carried as <u>inertial reference devices</u> to provide attitude reference to AACS for those periods when celestial references are not being used. For Magellan, this was the case nearly continuously; celestial references were used only during specific star scan maneuvers once every orbit or two. Other spacecraft, such as Galileo, Voyager and Cassini, are designed to use celestial reference nearly continuously, and they rely on inertial reference devices for their attitude reference only during relatively short maneuvers when celestial reference is lost. In either case, gyro data must be taken with a grain of salt; mechanical gyroscopes precess and drift due to internal friction. Non-mechanical gyros also drift due to design constraints. Gyros' rates of drift are carefully calibrated so that the AACS may compensate as best it can when it computes its attitude knowledge using gyro references. It's important not to confuse gyros and reaction wheels. Gyros provide inertial *reference* inputs to AACS computers. If they have any moving parts, they are small and lightweight. Reaction wheels are fairly massive attitude *control* devices at the output of AACS computers. A few different gyroscope technologies are in use on today's spacecraft: - Mechanical gyros, used on Voyager and Magellan, rely on the rigidity in space of the axis of a spinning mass to provide attitude reference signals. This principle is easily demonstrated in a toy gyroscope. Mechanical gyros have limited lifespans due to mechanical wear. - Laser ring gyros and fiber-optic laser gyros use interferometry to sense the Doppler effect induced in beams of light when the unit is rotated. Laser gyros have no moving parts to wear out. - Hemispherical resonator gyros, used on NEAR and Cassini, sense movement of a standing wave in a fused-silica shell. The wave is like a wineglass 'singing' as you slide your finger around the rim. Null points in the wave precess when the unit is rotated. Other than their vibrating sensor shells, hemispherical resonator gyros have no moving parts. ## **Telecommunications Subsystems** This section deals specifically with telecommunications equipment on board a spacecraft. A broader view of telecommunications issues may be found in Chapter 10, and the Deep Space Network's role is detailed in Chapter 18. Telecommunications subsystem components are chosen for a particular spacecraft in response to the requirements of the mission profile. Anticipated maximum distances, planned frequency bands, data rates and available on-board transmitter power are all taken into account. Each of the components of this subsystem is discussed below: #### **High-Gain Antennas (HGA)** Dish-shaped HGAs are the spacecraft antennas principally used for communications with Earth. The amount of gain achieved by an antenna (indicated here as high, low, or medium) refers to the relative amount of incoming radio power it can collect and focus into the spacecraft's receiving subsystems, and outbound energy from the spacecraft's transmitter. In the frequency ranges used by spacecraft, this means that HGAs incorporate large paraboloidal reflectors. The cassegrain arrangement, described in Chapter 6, is the ULYSSES PRIME FOCUS HGA HGA configuration used most frequently aboard interplanetary spacecraft. Ulysses, which uses a prime focus feed, is one exception. HGAs may be either steerable or fixed to the spacecraft bus. The Magellan HGA, which also served as a radar antenna for mapping and as a drogue for aerobraking, was not articulated; the whole spacecraft had to be maneuvered to point the HGA to Earth for communications. HGAs can also serve as a fine sunshade. Magellan's and Cassini's are good examples. Mission ops people routinely pointed it to the sun in order to provide some needed shade for the rest of the spacecraft. MGS WITH ARTICULATED HGA The Mars Global Surveyor spacecraft's HGA is on an articulated arm to allow the antenna to maintain Earth-point independent of the spacecraft's attitude while it maps the surface of Mars. Galileo's HGA was designed to unfold like an umbrella after launch to enable the use of a larger diameter antenna than would have fit in the Space Shuttle cargo bay if a fixed antenna had been chosen. It did not unfurl, though, and Galileo had to carry out its mission using a low-gain antenna constrained to low data rates. The larger the collecting area of an HGA, the higher the gain, and the higher the data rate it will support. The higher the gain, the more highly directional it is. An HGA on an interplanetary spacecraft must be pointed to within a fraction of a degree of Earth for communications to be feasible. Once this is achieved, communications take place over the highly focused radio signal. This is analogous to using a telescope, which provides magnification (gain) of a weak light source, but requires accurate pointing. To continue the telescope analogy, no magnification is achieved with the unaided eye, but it covers a very wide field of view, and need not be pointed with great accuracy to detect a source of light, as long as it is bright enough. In case AACS fails to be able to point a spacecraft's HGA with high accuracy for one reason or another, there must be some other means of communicating with the spacecraft. #### **Low-Gain Antennas** Low-gain antennas (LGAs) provide wide-angle coverage (the "unaided-eye," in the analogy) at the expense of gain. Coverage is nearly omnidirectional, except for areas which may be shadowed by the spacecraft body. LGAs are designed to be useable for relatively low data rates, as long as the LGA ATOP HGA spacecraft is within relatively close range, several AU for example, and the DSN transmitter is powerful enough. Magellan could use its LGA at Venus's distance, but Voyager must depend on its HGA since it is over 40 AU away. Some LGAs are conveniently mounted atop the HGA's subreflector, as in the accompanying diagram. This is the case with Voyager, Magellan, Cassini, and Galileo. Ulysses carries an LGA atop its prime focus feed. A second LGA, designated LGA-2, was added to the Galileo spacecraft in the redesign which included an inner-solar system gravity assist. LGA-2 faces aft, providing Galileo with fully omnidirectional coverage by accommodating LGA-1's blind spots. Cassini's LGA-2 is mounted near the aft end of the spacecraft to provide coverage when LGA-1 is shaded by the spacecraft body. ## Medium-gain Antennas MGAs are a compromise, providing more gain than an LGA, with wider angles of pointing coverage than an HGA, on the order of 20 or 30 degrees. Magellan carried an MGA consisting of a large cone-shaped feed horn, which was used during some maneuvers when the HGA was off Earth-point. ### **Spacecraft Transmitters** A spacecraft transmitter is a lightweight electronic device that generates a tone at a single designated radio frequency, typically in the <u>S-band</u>, <u>X-band</u>, <u>or Ka-band</u> for communications and radio science. This tone is called the carrier. As described in <u>Chapter 10</u>, the carrier can be sent from the spacecraft to Earth as-is, or it can be modulated with data or a data-carrying subcarrier. The signal generated by the spacecraft transmitter is passed to a power amplifier, where its power is boosted to the neighborhood of tens of watts. This microwave-band power amplifier may be a solid state amplifier (SSA) or a traveling wave tube (TWT, also TWTA, pronounced "tweeta," for TWT Amplifier). A TWTA is a vacuum tube. It uses the interaction between the field of a wave propagated along a waveguide, and a beam of electrons traveling along with the wave. The electrons tend to travel slightly faster than the wave, and on the average are slowed slightly by the wave. The effect TRAVELLING WAVE TUBE AMPLIFIER amplifies the wave's total energy. TWTAs require a regulated source of high voltage. The output of the power amplifier is ducted through waveguides and commandable waveguide switches to the antenna of choice: HGA, MGA, or LGA. ####
Spacecraft Receivers Commandable waveguide switches are also used to connect the antenna of choice to a receiver. The receiver is an electronic device which is sensitive to a narrow band of frequency, generally a width of plus and minus a few kHz of a single frequency selected during mission design. Once an uplink is detected within its bandwidth, the receiver's phase-lock-loop circuitry (PLL) will follow any changes in the uplink's frequency within its bandwidth. JPL invented PLL technology in the early 1960s, and it has since become standard in the telecommunications industry. The receiver's circuitry can provide the transmitter with a frequency reference <u>coherent</u> with the received uplink. The received uplink, once detected, locked onto, and stepped down in frequency, is stripped of its command-data-carrying subcarrier, which is passed to circuitry called a command detector unit (CDU). The CDU converts the analog phase-shifts that were modulated onto the uplink, into binary 1s and 0s, which are then typically passed to the spacecraft's <u>CDS</u>. Frequently, transmitters and receivers are combined into one electronic device which is called a transponder. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS **SECTION I** **ENVIRONMENT** 1 The Solar System 2 Reference Systems **3** Gravity & Mechanics **4** Trajectories **5** Planetary Orbits <u>**6**</u> Electromagnetics **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification **10** Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network ## 11.01 Which of the following would be associated with a Structure Subsystem? Bus Fault protection Louvers Component support **TWTA** ## 11.02 Which of the following would be associated with a Data Handling Subsystem? Spacecraft safing **SCLK** **SCET** **TWTA** **TLM Packets** Spacecraft commanding ## 11.03 Which of the following would be associated with an Attitude & Articulation Control Subsystem? Precision Doppler Star scanner Sun sensor Reaction wheels Inertial reference unit **HGA** ## 11.04 Which of the following would be associated with a Telecommunications Subsystem? **TWTA** HGA LGA **SCLK** **CDS** Transponder #### 11.05 Which of the following is a function of reaction wheels? To rotate the spacecraft as directed by the AACS computer. To transfer angular momentum to and from the spacecraft. To provide inertial reference to the AACS computer. To generate electrical power. ### 11.06 Which of the following is a function of gyros? To mechanically force the spacecraft's attitude. To provide celestial reference to the AACS computer. To provide inertial reference to the AACS computer. To mechanically force spacecraft spin. SKIP ANSWER CHECK | HOVE | CLUDE | l napew | | INTER OF MEASURE | Lange | |------|-------|---------|----------|-------------------------|-------| | HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS | | | | | | | | | | | | | | | SECTION I ENVIRONMENT 1 The Solar System <u>**2**</u> Reference Systems 3 Gravity & Mechanics 4 Trajectories **5** Planetary Orbits $\underline{\mathbf{6}}\underline{\ Electromagnetics}$ **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network ## **Electrical Power Supply and Distribution Subsystems** On an interplanetary spacecraft, roughly between 300 W and 2.5 kW of electricity is required to power all the computers, radio transmitters and receivers, motors, valves, data storage devices, instruments, a host of sensors, and other devices. Cassini uses roughly 1 kW. A power supply for an interplanetary spacecraft must provide a large percentage of its rated power over a lifetime measured in years or decades. Here's a quick <u>primer</u> on voltage, current, power, AC and DC. How does a spacecraft meet these demanding electrical power needs? Choices of technology to meet these requirements are constrained largely to two: <u>photovoltaics</u> (PV) and <u>radioisotope thermo-electric generators</u> (RTGs). Battery power is an option for use only on short-lived missions such as the Galileo or Huygens atmospheric-entry probes, but the batteries must be charged by PV or RTG sources before deploying. #### **Photovoltaics** As the term suggests, photovoltaic materials have the ability to convert light directly to electricity. An energy conversion efficiency of about 29% was achieved in July 2000, and gains of a few more percent may be possible early in the 21st century. Crystalline silicon and gallium arsenide are typical choices of materials for deep-space applications. Gallium arsenide crystals are grown especially for photovoltaic use, but silicon crystals are available in less-expensive standard SOLAR CELL ingots which are produced mainly for consumption in the microelectronics industry. When exposed to direct sunlight at 1 AU, a current of about an ampere at 0.25 volt can be produced by a 6 cm diameter silicon cell. Gallium arsenide is notably tougher and more efficient. To manufacture solar cells, crystalline ingots are grown and then sliced into wafer-thin circles, and metallic conductors are deposited onto each surface: typically a thin grid on the sun-facing side and a flat sheet on the other. Spacecraft solar panels are constructed of these cells trimmed into appropriate shapes and cemented onto a substrate, sometimes with protective glass covers. Electrical connections are made in series-parallel to determine total output voltage. The resulting assemblies are called solar panels, PV panels, or solar arrays. The cement and the substrate must be thermally conductive, because in flight the cells absorb infrared energy and can reach high temperatures, though they are more efficient when kept to lower temperatures. MGS SOLAR ARRAYS Farther than about the orbit of Mars, the weaker sunlight available to power a spacecraft would require panels larger than practicable because of the increased launch mass and the difficulty in supporting, deploying, and articulating them. Magellan and Mars Observer were designed to use solar power, as was Deep Space 1, Mars Global Surveyor, Mars Pathfinder, and Lunar Prospector. Topex/Poseidon, the Hubble Space Telescope, and most other Earth-orbiters use solar power. Solar panels have to be articulated to remain at optimum sun point, though they may be off-pointed slightly for periods when it may be desirable to generate less power. Prolonged exposure to sunlight causes photovoltaics' performance to degrade in the neighborhood of a percent or two per year, and more rapidly when exposed to particle radiation from solar flares. In addition to generating electrical power, solar arrays have also been used to generate atmospheric drag for aerobraking operations. Magellan did this at Venus, as did MGS at Mars. Gold-colored aerobraking panels at the ends of MGS's solar arrays, visible in the image above, added to the aerodynamic drag for more efficient aerobraking. #### **Radioisotope Thermoelectric Generators** Radioisotope thermoelectric generators (RTGs) are used when spacecraft must operate at significant distances from the sun where the availability of sunlight, and therefore the use of solar arrays, is otherwise infeasible. RTGs as currently designed for space missions contain several kilograms of an isotopic mixture of the radioactive element plutonium in the form of an oxide, pressed into a ceramic pellet. The primary constituent of these fuel pellets is the plutonium isotope 238 (Pu-238). The pellets are arranged in a converter housing where they function as a heat source to generate the electricity provided by the RTG. The natural radioactive decay of the plutonium produces heat (RTGs do not use fission or fusion), some of which is converted into electricity by an array of thermocouples made of silicon-germanium junctions. An RTG uses no moving parts to create electricity. Waste heat is radiated into space from an array of metal fins. CUTAWAY VIEW OF CASSINI'S RTGs Click image for an in-depth discussion. Plutonium, like all radioactive materials and many non-radioactive materials, can be a health hazard under certain circumstances and in sufficient quantity. RTGs are designed, therefore, with the goal of surviving credible launch accident environments without releasing plutonium. The safety design features of RTGs are tested by the US Department of Energy to verify the survival capabilities of the devices. Presidential approval is required for the launch of RTGs. Prior to the launch of a spacecraft carrying an RTG a rigorous safety analysis and review is performed by the Department of Energy, and the results of that analysis are evaluated by an independent panel of experts. These analyses and reviews are used by the Office of Science and Technology Policy (OSTP) in the White House to evaluate the overall risk presented by the mission. Since they remain thermally hot, RTGs must be located on the spacecraft in such a way to minimize their impact on infra-red detecting science instruments. Galileo's RTGs are mounted behind shades to hide the near-infrared mapping spectrometer from their radiant heat. Shades are used on Cassini for similar reasons. RTGs performance degrades in flight about one to two percent per year, slightly faster degradation than for photovoltaics. #### **Electrical Power Distribution** Virtually every electrical or electronic component on a spacecraft may be switched on or off via command. This is accomplished using solid-state or mechanical relays that connect or disconnect the component from the common distribution circuit, called a main bus. On some spacecraft, it is necessary to power off some set of
components before switching others on in order to keep the electrical load within the limits of the supply. Voltages are measured and telemetered from the main bus and a few other points in the electrical system, and currents are measured and telemetered for many individual spacecraft components and instruments to show their consumption. <u>Here</u> is a discussion about the Cassini spacecraft's electrical power system. Typically, a shunt-type regulator maintains a constant voltage from the power source. The voltage applied as input to the shunt regulator is generally variable but CASSINI'S RTG SHADES higher than the spacecraft's required constant bus voltage. The shunt regulator converts excess electrical energy into heat, most of which is radiated away into space via a radiating plate. On spacecraft equipped with articulating solar panels, it is sometimes possible, and desirable for reasons of spacecraft thermal control, to off-point the panels from the sun to reduce the regulator input voltage and thus reduce the amount of heat generated by the regulator. #### **Electrical Power Storage** Spacecraft which use photovoltaics usually are equipped with rechargable batteries that receive a charge from the main bus when the solar panels are in the sunlight, and discharge into the bus to maintain its voltage whenever the solar panels are shadowed by the planet or off-pointed during spacecraft maneuvers. Nickel-cadmium (Ni-Cad) batteries are frequently used. After hundreds of charge-discharge cycles, this type of battery degrades in performance, but may be rejuvenated by carefully controlled deep discharge and recharge, an activity called <u>reconditioning</u>. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS **SECTION I**ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories <u>**5** Planetary Orbits</u> <u>**6**</u> Electromagnetics **SECTION II** FLIGHT PROJECTS 7 <u>Mission Inception</u> **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network # **Temperature Control Subsystems** An interplanetary spacecraft is routinely subjected to extremes in temperature. Both the Galileo and Cassini spacecraft were designed for primary missions deep in the outer solar system, but their gravity-assist trajectories kept them in close to the sun for a long time. They had to be able to withstand solar effects much stronger than here on Earth as they flew by Venus during early cruise. And for their missions at Jupiter and Saturn, their design had to protect them from extreme cold. Passive thermal control is obtained with <u>multi-layer</u> <u>insulation</u>, MLI, which is often the most visible part of a spacecraft. White or gold-colored thermal blankets reflect IR, helping to protect the spacecraft from excess solar heating. Gold is a very efficient IR reflector, and is used to shade critical components. The image at right shows the Cassini spacecraft fitted with its multilayer thermal blankets. Their gold color results from a reflective aluminum coating behind sheets of amber colored capton material. MLI reflects sunlight to shade the spacecraft against overheating, and retains internal spacecraft heat to prevent too much cooling. Optical solar reflectors (OSRs), which are quartz mirror tiles, may be used for the same purpose. They were used extensively on Magellan. Active thermal control components include autonomous, thermostatically controlled resistive electric heaters, as well as electric heaters that can be commanded on or off from Earth. Electrical equipment also contributes heat when it is operating. When the equipment is turned off, sometimes a replacement heater is available to be turned on, keeping the equipment within its thermal limits. Sometimes radioisotope heater units (RHUs) are placed at specific locations on the spacecraft. Temperature sensors are placed at many locations throughout the spacecraft, and their measurements are telemetered to thermal engineers. They can command heaters as needed, and recommend any needed modifications to spacecraft operations to make sure no thermal limits are violated. Louvers, which on some spacecraft may be counted under the mechanical devices subsystem, help minimize electrical power used for heaters to maintain temperature. They can help adapt to changes in the environment. Louvers vary the angle of their blades to provide thermal control by changing the effective emission of a covered surface. The louvers are positioned by bi-metallic strips similar to those in a thermostat. They directly force the louvers open when internal temperatures are high, permitting heat to radiate into space. Cold internal temperatures cause the louvers to drive closed to reflect back and retain heat. Active cooling systems, such as refrigeration, are generally not practical on interplanetary spacecraft. Instead, painting, shading, and other techniques provide efficient passive cooling. Internal components will radiate more efficiently if painted black, helping to transfer their heat to the outside. For an atmospheric spacecraft, the searing heat of atmospheric entry is typically controlled by an aeroshell whose surface may be designed to ablate or simply to insulate with high efficiency. After entering the atmosphere, the aeroshell is typically <u>jettisoned</u> to permit the spacecraft to continue its mission. ## **Micro-meteoroid Protection** Multi-layer thermal insulation blankets also provide some protection against micro-meteoroid impacts. They are made with capton, kevlar, or other fabrics strong enough to absorb energy from high-velocity micro-meteoroids before they can do any damage to spacecraft components. Impact hazards are greatest when crossing the ring planes of the Jovian planets. Voyager recorded thousands of hits in these regions, fortunately from particles no larger than smoke STARDUST WITH SHIELDS Click image for more info. particles. Spacecraft sent to comets, such as Giotto and Stardust, carry massive shields to protect from hits by larger particles. # **Propulsion Subsystems** Spacecraft are provided with sets of propulsive devices so they can maintain three-axis stability, control spin, execute maneuvers, and make minor adjustments in trajectory. The more powerful devices are usually called engines, and they may provide a force of several hundred Newtons. These may be used to provide the large torques necessary to maintain stability during a solid rocket motor burn, or they may be the only rockets used for orbit insertion. Smaller devices, generating between less than 1 N and 10 N, are typically used to provide the delta-V for interplanetary trajectory correction maneuvers, orbit trim maneuvers, reaction wheel desaturation maneuvers, or routine three-axis MAGELLAN ROCKET ENGINE MODULE stabilization or spin control. Many of the activities of propulsion subsystems are routinely initiated by AACS. Some or all may be directly controlled by or through CDS. This photo shows one of the Magellan spacecraft's four rocket engine modules. Each module has two black colored 445-N engines, one gold colored 22-N thruster, and three gold colored 1-N thrusters. The 445-N engines were aimed aft for large midflight course corrections and orbit-trim corrections, and for controlling the spacecraft while its solid rocket moror burned during Venus orbit insertion. The 22-N thrusters, perpendicular to Magellan's centerline, kept the spacecraft from rolling during those same maneuvers. The 1-N thrusters were used for momentum wheel desaturation and other small maneuvers. Other components of propulsion subsystems include propellant tanks, plumbing systems with electrically or pyrotechnically operated valves, and helium tanks to supply pressurization for the propellant. Some propulsion subsystems, such as Galileo's, use hypergolic propellants--two compounds stored separately which ignite spontaneously upon being mixed in the engines or thrusters. Other spacecraft use hydrazine, which decomposes explosively when brought into contact with an electrically heated metallic catalyst within the engines or thrusters. Cassini, whose propulsion system is illustrated below, uses both hypergolics for its main engines and hydrazine monopropellant for its thrusters. The <u>Deep Space 1</u> spacecraft is a pioneer in the use of <u>ion-electric propulsion</u> in interplanetary space. With their high nozzle exit velocities, ion engines can permit spacecraft to achieve the high velocities required for interplanetary or interstellar flight. DS-1 ION ENGINE Click image for details. An ion engine functions by taking a gas such as xenon, and ionizing it (removing electrons from the atoms) to make it responsive to electric and magnetic fields. Then the ions are accelerated to extremely high velocity using electric fields and ejected from the engine. Electrical power comes from arrays of photovoltaic cells converting sunlight, so the technology is also called solar-electric propulsion. The act of ejecting mass at extremely high speed provides the classical action for which the reaction is spacecraft acceleration in the opposite direction. The much higher exhaust speed of the ions compared to chemical rocket exhaust is the main factor in the engine's higher performance. The ion engine also emits electrons, not to take advantage of accelerating their tiny mass, but to avoid building a negative electric charge on the spacecraft and causing the positively charged ion clouds to follow it. # **Mechanical Devices Subsystems** A mechanical devices subsystem typically supplies equipment to a spacecraft that deploys assemblies after launch. It provides motion that can be initiated, but once initiated is not controlled by feedback or other means. Some of these are pyrotechnically initiated mechanisms (pyros). These
devices may be used to separate a spacecraft from its launch vehicle, to permanently deploy booms, to release instrument covers, to jettison an aeroshell and deploy parachutes, to control fluid flow in propulsion and pressurization systems, and to perform many other such functions. While pyro devices are lightweight, simple and reliable, they have drawbacks including their "one-shot" nature and potential hazards to people handling them. Mars Pathfinder depended on 42 pyro device events during atmospheric entry, CASSINI ARTICULATED REACTION WHEEL MECHANISM descent and landing. A launch vehicle may depend on a hundred or more pyro events during ascent. Alternative technologies are becoming available to perform many of the tasks traditionally performed by pyro devices. Prior to initiating or "setting off" a pyro device, an assembly in the electrical power subsystem, typically called a pyrotechnic switching unit (PSU), may be commanded to operate, charging a capacitor bank that can provide the spike of high current the device needs to fire, protecting the main bus from a momentary power drain. Pyro devices typically used on a spacecraft include pyro valves, "explosive" bolts, zip cord, cable cutters, and pin pullers. "Explosive" bolt is a misnomer since modern devices are designed to separate with little mechanical shock and no stray particle release. The Cassini spacecraft's <u>mechanical devices subsystem</u> has many functions typical of other spacecraft. It may also be informative to visit a pyrotechnic device <u>supplier's</u> <u>website</u> or <u>two</u>. # **Block Diagram Illustration** Linked here is a block diagram that illustrates how an interplanetary Space Flight System functions, using the Magellan spacecraft, which combined many of the subsystems discussed in this chapter. Magellan's mission succeeded in obtaining high resolution data from the entire surface of Venus in the early 1990's. The spacecraft carried only one science instrument, the Radar, to penetrate Venus's cloud cover. Otherwise, the spacecraft's subsystems are representative of those found on many other spacecraft. Click the thumbnail image at right for the full-size (273 kbyte) diagram. Boxes within the diagram are shown double or triple to indicate the presence of two or three units of the same name. The numbers 12, 4, and 8 below the rocket engines indicate the quantity of each kind installed. Birchical Power Subsystem Shut Register For Subsystem Shut Register For Subsystem Shut Register For Subsystem Shut Register For Subsystem Shut Anny Department Subsystem Shut Register Subsystem Shut Register Subsystem Shut Register Subsystem Command, Data & Data Storage Subsystem Elegation Elegation Elegation Command Subsystem Final Subsystem Command Subsystem Final Subsystem Command Subsystem Final Sub MAGELLAN FLIGHT SYSTEM BLOCK DIAGRAM Click for full-size diagram. # **Redundancy and Flexibility** The hallmark of modern automated spacecraft is flexibility: the ability to maintain or restore functionality after component failure, or to increase and extend functionality based on newly conceived techniques. Components fail unexpectedly during the life of a mission. Most components upon which the success of the mission depends have redundant backups, and the means to reroute functional flow to accommodate their use either autonomously or via commanding in real time. Several spacecraft continue to operate today, such as Voyager, Galileo, and Pioneer, returning valuable science data long after their primary missions have been completed, thanks entirely to the on-board availability of redundant transmitters, receivers, tape recorders, gyroscopes, antennas, and the all-important ability to modify on-board flight software. # **Advanced Technologies** Ongoing research at JPL and other institutions is producing new technologies useful for less costly and more capable, more reliable and efficient spacecraft for future space missions. Advances in such areas as spacecraft power, propulsion, communications, navigation, data handling systems, pointing control and materials is expected to increase many times the potential science returns from future missions. Here are a few of the many promising technologies being developed: **Solar sails**, which use solar radiation pressure in much the same way that a sailboat uses wind, will provide a means for high-speed interplanetary or interstellar propulsion. Here are some interesting solar-sailing links: - Interstellar Probe - Geostorms - Solar Blade - Space Regatta Consortium - Voiliers Solaires **Telecommunications** systems are being developed to operate in K and Ku <u>bands</u>, higher frequencies than the current S- and X-band systems. Laser telecommunications systems are also being explored which modulate data onto beams of coherent light instead of radio. Among the advantages to laser telecommunications are low power consumption, much higher data rates, and reduced-aperture Earth stations. The pointing requirements for laser communication are much more stringent than for microwave radio communication. During Galileo's Earth-2 flyby en route to Jupiter, JPL succeeded in transmitting laser signals to Galileo, which received them as points of light detected by the Solid State Imaging System (SSI). <u>Interferometry</u> will be a technology to watch. Spaceborne radio telescopes, infrared telescopes and visible-light telescopes will be flown in exacting formation to synthesize large apertures for many different types of investigations in astronomy, astrophysics and cosmology. These instruments will eventually be able to image planets around neighboring stars. JPL has many <u>planned</u> and <u>proposed</u> missions which will take advantage of advanced technologies. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS **ENVIRONMENT** 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories **5** Planetary Orbits <u>**6**</u> Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation #### **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network # 11.07 Which of the following are practical primary sources of electrical power for an interplanetary spacecraft? batteries photovoltaics solar panels fuel cells RTGs #### 11.08 A solar panel produces electricity... only within about 1 AU from the sun using photovoltaics as alternating current only when in sunlight more efficiently when hot # 11.09 A radioisotope thermo-electric generator produces electrical power... with no moving parts by atomic fission from the heat of radioactive decay by atomic fusion using thermocouples using photovoltaics # 11.10 What is the general purpose of a Mechanical Devices subsystem? to integrate all other subsystems. provide for activities such as deployments. physically support the other subsystems. provide mechanical attach points for transportation. #### 11.11 Helium is used in propulsion subsystems... to make the spacecraft lighter. to pressurize fuel tanks. to pressurize oxidizer tanks. as an emergency propellant. ## 11.12 Multilayer insulation serves to... maintain a sterile spacecraft environment. passively maintain spacecraft temperature. protect against micro-meteoroid impacts. prevent fire. SKIP ANSWER CHECK HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS **SECTION I** **ENVIRONMENT** 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network #### **Objectives:** Upon completion of this chapter you will be able to distinguish between remoteand direct-sensing science instruments, state their characteristics, recognize examples of them, and identify how they are classified as active or passive sensors. Most interplanetary missions are flown to collect science data. The exceptions are spacecraft like Deep Space 1, whose purpose is to demonstrate new technologies and validate them for future use on science missions. On a science mission, though, all the engineering subsystems and components that we've discussed up to this point serve a single purpose. That purpose is to deliver scientific instruments to their destination, to enable them to carry out their observations and experiments, and to return data from the instruments. # **Science Payload** There are many different kinds of scientific instruments. They are designed, built, and tested by teams of scientists working at institutions around the world who deliver them to spacecraft before launch. Once delivered, they are integrated with the spacecraft, and tests continue with other subsystems to verify their commands function as expected, telemetry flows back from the instrument, and its power, thermal, and mechanical properties are within limits. After launch, the same scientists who created an instrument may operate it in flight through close cooperation with the rest of the flight team. ## The large illustration introduced in Chapter 11 shows some of the science instruments discussed in this chapter. The purpose of this chapter is not to describe all science instruments. There are too many, they are complicated, and new ones are always being designed. We can, however, describe the basic categories of science instruments, and populate them with some examples. This will provide some keys so you will be able to recognize current and future science instruments, to immediately know their general purpose, to broadly understand how they operate, and to realize what their basic operational requirements must be. Many science
instruments are now described in detail on the Web, which makes it convenient to learn all about them. Some high quality links are provided throughout the chapter. # **Direct- and Remote-sensing Instruments** **Direct-sensing** instruments interact with phenomena in their immediate vicinity, and register characteristics of them. The heavy ion counter on Galileo is a direct sensing instrument. It registers the characteristics of ions in the spacecraft's vicinity that actually enter the instrument. It does not attempt to form any image of the ions' source. Galileo and Cassini each carry dust detectors. These measure properties, such as mass, species, speed, and direction, of dust particles which actually enter the instrument. They do not attempt to form any image of the source of the dust. GALILEO HEAVY ION COUNTER Click image for larger view. **Remote-sensing** instruments, on the other hand, exist to form some kind of image or characterization of the <u>source</u> of the phenomena that enter the instrument. In doing so, they record characteristics of objects at a distance, sometimes forming an image by gathering, focusing, and recording light. A <u>camera</u>, also called an <u>imager</u>, is a classic example of a remote-sensing instrument. ## **Active and Passive Instruments** If an instrument only receives and processes existing light or other phenomena, it is said to be passive. Typical of this type would be an imaging instrument viewing a planet that is illuminated by sunlight or a magnetometer measuring existing magnetic fields. An active instrument provides its own means of sensing the remote object. Typical of this would be a <u>radar</u> system. Radar generates pulses of radio waves that it sends to a surface and then receives their reflections back from the surface to create images or deduce characteristics of the surface. Some <u>radio science</u> experiments, described in Chapter 8, are also examples of active sensing since they send radio energy through a planet's atmosphere or rings to actively probe the phenomena, with the results being received directly on Earth. SOJOURNER's APXS sample. Most of the active-sensing instruments on a spacecraft are also remote-sensing instruments. An exception, an active direct-sensing instrument, would be one that comes in contact with an object of interest while providing a source of energy to probe the object. An example of this type of instrument is the Alpha-Proton X-ray Spectrometer, <u>APXS</u>, carried by the Sojourner Rover on Mars. The instrument contained a source of alpha-particle (proton) radiation that the rover placed directly upon various sample rocks on the Martian surface to determine their composition by acquiring energy spectra of the alpha particles, protons and x-rays returned from the # **Examples of Direct-Sensing Science Instruments** #### High-energy Particle Detectors High-energy particle detector instruments measure the energy spectra of trapped energetic electrons, and the energy and composition of atomic nuclei. They may employ several independent solid-state-detector telescopes. The Cosmic Ray Subsystem, CRS, on the Voyagers measures the presence and angular distribution of particles from planets' magnetospheres and from other stars: electrons of 3-110 MeV and nuclei 1-500 MeV from hydrogen to iron. The Energetic Particle Detector on Galileo is sensitive to the same nuclei with energies from 20 keV to 10 MeV. VOYAGER's CRS # **Low-Energy Charged-Particle Detectors** A low-energy charged-particle detector (LECP) is a mid-range instrument designed to characterize the composition, energies, and angular distributions of charged particles in interplanetary space and within planetary systems. One or more solid-state particle detectors may be mounted on a rotating platform. The Voyagers' LECPs are sensitive from around 10 keV up into the lower ranges of the Cosmic Ray detector. Ulysses' LECP is similar, and is named GLG for its Principal Investigators Gloeckler and Geiss. #### Plasma Instruments CASSINI's **CAPS** Plasma detectors serve the low-end of particle energies. They measure the density, composition, temperature, velocity and three-dimensional distribution of plasmas, which are soups of positive ions and electrons, that exist in interplanetary regions and within planetary magnetospheres. Plasma detectors are sensitive to solar and planetary plasmas, and they observe the solar wind and its interaction with a planetary system. The Cassini Plasma Spectrometer Subsystem, CAPS, measures the flux (flow rate or density) of ions as a function of mass per charge, and the flux of ions and electrons as a function of energy per charge and angle of arrival. #### **Dust Detectors** Dust detectors measure the velocity, mass, charge, flight direction and number of dust particles striking the instrument. As an example, Galileo's instrument can register up to 100 particles per second and is sensitive to particle masses of between 10⁻¹⁶ and 10⁻⁶ gram. The <u>Heidelberg Dust Research</u> <u>Group</u> is responsible for dust detection experiments on many spacecraft, including Galileo, Ulysses, Cassini, DUNE, ISO, Rosetta, and Stardust. Cassini's Cosmic Dust Analyzer, <u>CDA</u>, can determine the species of material in some dust particles as well as the properties mentioned above. Some very informative animations of how it operates can be found <u>here</u>. CASSINI COSMIC DUST ANALYZER Click image for larger view. #### Magnetometers Magnetometers are direct-sensing instruments that detect and measure the interplanetary and solar magnetic fields in the vicinity of the spacecraft. They typically can detect the strength of magnetic fields in three planes. As a magnetometer sweeps an arc through a magnetic field when the spacecraft rotates, an electrical signature is produced proportional to the strength and structure of the field. The Voyager Magnetometer Experiment (MAG) consists of two low-field magnetometers and two high-field magnetometers that together provide measurement of fields from 0.02 nano-Tesla (nT) to 2,000,000 nT. Voyager magnetometers were built at NASA GSFC where their investigation resides. On VOYAGER's MAG BOOM Click image. the spacecraft, the instruments populate a 13-meter-long fiberglass boom to keep them away from on-board interference. The magnetometers provide direct field measurement of both the planetary and the interplanetary media. Having completed their exploration of the outer planets, the Voyager magnetometers are now a key component of the Voyager Interstellar Mission, collecting measurements of magnetic fields far from the Sun. It is typical for magnetometers to be isolated from the spacecraft on long extendable booms. This is a picture of Voyager's MAG boom being extended during a pre-launch test. Since the boom cannot support its own weight in 1-G, a cage arrangement suspends the boom as it extends. The 13-m boom was unfurled from a cannister less than a meter in length, visible in this pre-launch image (HGA not installed). #### Plasma Wave Detectors Plasma wave detectors typically measure the electrostatic and electromagnetic components of plasma waves in three dimensions. The instrument functions like a radio receiver sensitive to the wavelengths of plasma in the solar wind from about 10 Hz to about 60 kHz. When within a planet's magnetosphere, it can be used to detect atmospheric lightning and events when dust particles strike the spacecraft. The Voyagers' plasma wave data has produced sound recordings of the particle hits the spacecraft experienced passing through the ring planes of the outer planets. Here is a link to Galileo's Plasma Wave Subsystem, PWS. # **Examples of Remote-Sensing Science Instruments** #### Planetary Radio Astronomy Instruments A planetary radio astronomy instrument measures radio signals emitted by a target such as a Jovian planet. The instrument on Voyager is sensitive to signals between about 1 kHz and 40 MHz and uses a dipole antenna 10 m long, which it shares with the plasma wave instrument. The planetary radio astronomy instrument detected emissions from the heliopause in 1993 (see the <u>illustration</u> in Chapter 1). Ulysses carries a similar instrument. #### Imaging Instruments An imaging instrument uses optics such as lenses or mirrors to project an image onto a detector, where it is converted to digital data. Natural color imaging requires three exposures of the same target through different color filters, typically selected from a filter wheel. Earth-based processing combines data from the three black and white images, reconstructing the original color by utilizing the three values for each picture element (pixel). Movies are produced by taking a series of images. In the past, the detector that creates the image was a vacuum tube resembling a small CRT (cathode-ray tube), called a <u>vidicon</u>. In a vidicon, an electron beam sweeps across a phosphor coating on the glass where the image is focused, and its electrical potential varies slightly in proportion to the levels of light it encounters. This varying potential becomes the basis of the digital video signal produced. Viking, Voyager, and Mariner spacecraft used vidicon-based imaging systems. A vidicon requires a fairly bright image to detect. Here are links to the Voyagers' wide angle and narrow angle cameras. Modern spacecraft use CCDs, <u>charge-coupled devices</u>. A CCD is usually a large-scale integrated circuit having a two-dimensional array of hundreds of thousands, or millions, of charge-isolated wells, each representing a pixel. Light falling on a well is absorbed by a photoconductive substrate such as silicon and releases a quantity of electrons proportional to the intensity of light. The CCD detects and stores accumulated electrical charge representing the light level on each well over time. These charges are read
out for conversion to digital data. CCDs are much more sensitive to light of a wider spectrum than vidicon tubes, they are less massive, require less energy, and they interface more easily with digital circuitry. It is typical for CCDs to be able to detect single photons. GALILEO CAMERA #### CCD IMAGING SYSTEM Galileo's Solid State Imaging instrument, <u>SSI</u>, which pioneered the technology, contains a CCD with an 800 x 800 pixel array. The optics for Galileo's SSI, inherited from Voyager, consist of a Cassegrain telescope with a 176.5-mm aperture and a fixed focal ratio of f/8.5. Since the SSI's wavelength range extends from the visible into the near-infrared, the experimenters are able to map variations in the satellites' color and reflectivity that show differences in the composition of surface materials. Not all CCD imagers have two-dimensional arrays. The Mars Orbiter Camera (MOC) on the Mars Global Surveyor spacecraft has a detector made of a single line of CCD sensors. A two-dimensional image is built up as the image of the Martian surface moves across the detector as the spacecraft moves in orbit, much as a page moves across the detector in a fax machine. ## The Magnetosphere Imager Cassini carries a unique instrument that's never been flown before. The Magnetospheric Imaging Instrument (MIMI) Ion and DETAIL OF A CCD DETECTOR Neutral Camera (INCA) can form images of the giant magnetic envelopes of Jupiter, its biggest in-flight test, and Saturn, its main objective. MIMI INCA doesn't use CCDs to make images. In fact it doesn't even use light at all. MIMI INCA is more like a particle detector, although unlike most particle detectors, it is actually a remote sensing instrument. MIMI INCA senses ions and neutral atoms that have been flung out of a planet's magnetosphere, forming an image of the source of the particles. #### Polarimeters Polarimeters are optical instruments that measure the direction and extent of the polarization of light reflected from their targets. Polarimeters consist of a telescope fitted with a selection of polarized filters and optical detectors. Careful analysis of polarimeter data can infer information about the composition and mechanical structure of the objects reflecting the light, such as various chemicals and aerosols in atmospheres, rings, and satellite surfaces, since they reflect light with differing polarizations. The molecules of crystals of most materials are optically asymmetrical; that is, they have no plane or center of symmetry. Asymmetrical materials have the power to rotate the plane of polarization of plane-polarized light. #### Photometers Photometers are optical instruments that measure the intensity of light from a source. They may be directed at targets such as planets or their satellites to quantify the intensity of the light they reflect, thus measuring the object's reflectivity or albedo. Also, photometers can observe a star while a planet's rings or atmosphere intervene during occultation, thus yielding data on the density and structure of the rings or atmosphere. #### Spectrometers Spectrometers are optical instruments that split the light received from objects into their component wavelengths by means of a diffraction grating. An example of a diffraction grating is a compact disc. It stores music or data in microscopic tracks. Observing a bright light shining on its surface demonstrates the effect diffraction gratings produce, separating light into its various wavelength, or color, components. Spectrometers then measure the intensities of the individual wavelengths, as described in Chapter 6. This data can be used to infer the composition and other properties of materials that emitted the light or that absorbed specific wavelengths of the light as it passed through the materials. This technique is useful in analyzing planetary atmospheres. Spectrometers carried on spacecraft are typically sensitive in the infrared and **CASSINI CIRS** ultraviolet wavelengths. The <u>Near-Infrared Mapping Spectrometer</u>, <u>NIMS</u>, on Galileo maps the thermal, compositional, and structural nature of its targets using a two-dimensional array of pixels. A spectrograph is an instrument that records spectral intensity information in one or more wavelengths of energy and then outputs the data in the form of a graph. (A spectrometer, in contrast, outputs spectral information as numerical data.) An imaging spectrograph converts the points on the graph to digital data that can be output in the form of a visual image, such as a "false color" picture. Cassini's ultraviolet instrument is the <u>Ultraviolet Imaging Spectrograph</u>, <u>UVIS</u>. Its infrared instrument is the Composite Infrared Mapping Spectrometer, CIRS. Some spectrographic instruments, such as Cassini's <u>Visible and Infrared Mapping Spectrometer</u>, <u>VIMS</u>, produce images whose every pixel contains spectral data at many different wavelengths. It is as though the instrument returns a whole *stack* of images with each observation, one image at each wavelength. Such data units are frequently called "cubes." #### Infrared Radiometers An infrared radiometer is a telescope-based instrument that measures the intensity of infrared (thermal) energy radiated by the targets. One of its many modes of observing is filling the field of view completely with the disc of a planet and measuring its total thermal output. This technique permits the planet's thermal energy balance to be computed, revealing the ratio of solar heating to the planet's internal heating. #### Other Instruments Follow the links below for additional instrument descriptions: - o Gamma-ray Spectrometer - Neutron Spectrometer - Electron Reflectometer #### o Alpha Particle Spectrometer #### **Combinations** Sometimes various optical instrumentation functions are combined into a single instrument, such as photometry and polarimetry combined into a photopolarimeter, or spectroscopy and radiometry combined into a radiometer-spectrometer instrument. One example is Galileo's Photopolarimeter Radiometer instrument, PPR. Another example is the Voyagers' infrared interferometer spectrometer and radiometers, IRIS. GALILEO PHOTOPOLARIMETER RADIOMETER #### Cooling CCD detectors in imagers and some spectrometry instruments perform best when they are cool. In infrared instruments, cooling essential for maintaining a signal-to-noise ratio that permits useful observations. Fortunately, it is easy to cool detectors in flight. Each may be mounted to a thermally conductive metal part that thermally connects to a radiator facing deep space. As long as flight operations keeps sunlight off the radiator, the detector's heat will radiate away into space. Detector temperatures in the neighborhood of 55 K can easily be maintained in this manner. As you browse various optical instrument designs, you'll find radiators (also called coolers) connected to the detectors. #### **Scan Platforms** Optical instrument are sometimes installed on an articulated, powered appendage to the spacecraft bus called a scan platform, which points in commanded directions, allowing optical observations to be taken independently of the spacecraft's attitude. This is the case on Voyager and Galileo. Most newer spacecraft are designed without scan platforms, since a scan platform adds to a spacecraft's complement of mechanical and other subsystems, increasing mass and potential for failure. The alternative is to mount optical instruments directly to the spacecraft and rotate the entire spacecraft to point them. This approach is feasible due to the availability of large-capacity data storage systems that can record data while the spacecraft is off Earth-point carrying out observations. # **Examples of Active Sensing Science Instruments** # Synthetic Aperture Radar Imaging Some solar system objects that are candidates for radar imaging are covered by clouds or haze, making optical imaging difficult or impossible. These atmospheres are transparent to radio frequency waves and can be imaged using Synthetic Aperture Radar (SAR) instruments, which provide their own penetrating illumination with radio waves. SAR synthesizes the angular resolving power of an antenna many times the size of the antenna aperture actually used. A SAR illuminates its target to the side of its direction of movement and travels a distance in orbit while the reflected, phase-shift-coded pulses are returning and being collected. This motion during reception provides the basis for synthesizing an antenna (aperture) on the order of kilometers in size, using extensive computer processing. For a SAR system to develop the resolution equivalent to optical images, the spacecraft's position and velocity must be known with great precision, and its attitude must be controlled tightly. This levies demands on the spacecraft's AACS and requires spacecraft navigation data to be frequently updated. SAR images are constructed of a matrix where lines of constant distance or range intersect with lines of constant Doppler shift. Magellan's radar instrument alternated its active operations as a SAR imaging system and radar altimeter with a passive microwave radiometer mode several times per second in orbit at Venus. #### Altimeters Radar pulses may be directed straight down to a planet's surface, the nadir, from a spacecraft in orbit, to measure variations in the height of terrain being overflown. The coded, pulsed signals are timed from the instant they leave the instrument until they are reflected back, and the distance is obtained by dividing by the speed of light. Terrain height is then deduced based upon knowledge of the orbital position of the spacecraft. The Pioneer 12 spacecraft and the Magellan spacecraft used radar altimeters at Venus. Laser light may also be used in the same manner for altimetry. Laser altimeters generally have a smaller footprint, and thus higher spatial resolution, than radar altimeters. They
require less power. The Mars Global Surveyor spacecraft carries a <u>laser altimeter</u> that uses a small cassegrain telescope. # **Some Links to Spacecraft Science Instrument Pages** Each of these linked pages is a complete list of all of the science instruments on a spacecraft, with links to information about each instrument. Among them you'll find direct- and remote-sensing instruments, and active and passive sensing instruments. - Voyager Science Instruments - Galileo Science Instruments - Cassini Science Instruments - Huygens Science Instruments - Mars Global Surveyor Science Instruments - Ulysses Science Instruments - Mars Pathfinder Science Instruments HOME GUIDE INDEY GLOSSARY LINITS OF MEASURE LINKS | HOME GUIDE INDEA GLOSSARI UNITS OF MEASURE LINKS | | | | | |--|------------------------|-------------------------------|--|--| | SECTION I | SECTION II | SECTION III | | | | ENVIRONMENT | FLIGHT PROJECTS | FLIGHT OPERATIONS | | | | 1 The Solar System | 7 Mission Inception | 14 Launch | | | | 2 Reference Systems | <u>8</u> Experiments | 15 Cruise | | | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | | | <u>4 Trajectories</u> | 10 Telecommunications | 17 Extended Operations | | | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | | | 6 Electromagnetics | 12 Science Instruments | | | | | _ | 13 Navigation | | | | # 12.01 Which of the following is/are by definition true of a direct-sensing science instrument? It is mounted directly on the spacecraft bus It measures a phenomenon in the spacecraft's vicinity It comes in direct contact with the object of its measurements It forms a characterization of the source of the phenomenon it senses It creates images #### 12.02 What qualifies an instrument as an "active" sensor? It has moving parts It probes the subject using the instrument's own energy It manufactures data It can be activated on command It actively measures existing light # 12.03 Which of these is/are passive remote-sensing instrument/s? Camera Spectrograph Spectroscope Magnetometer Plasma wave detector Radar #### 12.04 Which of the following is/are active direct-sensing instrument/s? Galileo SSI Sojourner APXS Magellan Radar Voyager PPS Cassini MIMI INCA There is no such thing. # 12.05 Which of the following is/are active remote-sensing instrument/s? Magellan Radar Galileo EPD Voyager MAG Cassini MIMI INCA Sojourner APXS There is no such thing. # 12.06 Which of the following are passive direct-sensing instrument/s? Magellan Radar Galileo EPD Voyager MAG Cassini MIMI INCA Sojourner APXS There is no such thing. **SKIP ANSWER CHECK** | HOME GUIDE IND | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |---|---|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter 17 Extended Operations 18 Deep Space Network | | | | | # Flight Chapter 13. Spacecraft Navigation #### **Objectives:** Upon completion of this chapter you will be able to describe basic ingredients of spacecraft navigation including spacecraft velocity and distance measurement, angular measurement, and how orbit determination is approached. You will be able to describe spacecraft trajectory correction maneuvers and orbit trim maneuvers. You will be able to recognize four distinct Deep Space Network data types used in navigation. Recall from Chapter 4 that a spacecraft on its way to a distant planet is actually in orbit about the sun, and the portion of its solar orbit between launch and destination is called the spacecraft's trajectory. Navigating a spacecraft involves determining its <u>orbital</u> <u>elements</u> and accounting for perturbations to its natural orbit. Then, comparing the precisely determined spacecraft's trajectory with knowledge of the destination object's orbit will reveal any changes that need to be made in the spacecraft's trajectory. Since the <u>Earth's own</u> orbital parameters and inherent motions are well known, the measurements we make of the spacecraft's motion as seen from Earth can be converted into the sun-centered or heliocentric orbital parameters needed to describe the spacecraft's trajectory. The meaningful measurements we can make from Earth of the spacecraft's motion are: - its position in Earth's sky, - its distance or range from Earth, and - the component of its velocity that is directly toward or away from Earth. Some spacecraft can also provide a fourth type of data, • optical navigation, wherein the spacecraft uses its imaging instrument to view a target planet or body against the background stars. By repeatedly acquiring these three or four types of data, a mathematical model may be constructed and maintained describing the history of a spacecraft's location in three-dimensional space over time. The navigation history of a spacecraft is incorporated not only in planning its future maneuvers, but also in reconstructing its observations of a planet or body it encounters. This is an essential to constructing SAR (synthetic aperture radar) images, tracking the spacecraft's passage through planetary magnetospheres or rings, and interpreting imaging results. Another use of navigation data is the creation of predicts, which are data sets predicting locations in the sky and radio frequencies for the Deep Space Network, DSN to use in acquiring and tracking the spacecraft. # **Navigation Data Acquisition** The basic factors involved in acquiring the types of navigation data mentioned above are described below. #### **Spacecraft Velocity Measurement** Measurements of the Doppler shift of a <u>coherent</u> downlink carrier provide the radial component of a spacecraft's Earth-relative velocity. Doppler is a form of the <u>tracking</u> data type, TRK, provided by the DSN. #### **Spacecraft Distance Measurement** A uniquely coded <u>ranging</u> pulse can be added to the uplink to a spacecraft and its transmission time recorded. When the spacecraft receives the ranging pulse, it returns the pulse on its downlink. The time it takes the spacecraft to turn the pulse around within its electronics is known from pre-launch testing. There are many other calibrated delays in the system, including the distance from the computers to the antenna within DSN. When the pulse is received at the DSN, its true elapsed time at light-speed is determined, and the spacecraft's distance is then computed. Ranging is also a type of TRK data provided by the DSN. Distance may also be determined using angular measurement. #### **Spacecraft Angular Measurement** The spacecraft's <u>position in the sky</u> is expressed using angular quantities. While the angles at which the DSN antennas point are monitored with an accuracy of thousandths of a degree, they are not precise enough to be used in determining a distant interplanetary spacecraft's position in the sky for navigation. Except when the spacecraft is close to Earth after launch, antenna angles are useful only for pointing the antenna to the predicts given for acquiring the spacecraft. Other means must be employed for measuring a distant spacecraft's angular position: #### Precision Ranging While <u>precision ranging</u> provides a distance measurement accurate within meters at the distance of Jupiter, it also provides precise angular location. It works this way: two widely saparated DSN stations, one at each of two different complexes such as Goldstone and Australia, conduct ranging measurements. Triangulation then pinpoints the spacecraft. As for DSN data type, precision ranging data is simply "regular" ranging data of the TRK type. #### VLBI Extremely precise angular measurements can be provided by an independent process, VLBI, <u>Very Long Baseline Interferometry</u>. A VLBI observation of a spacecraft begins when two DSN stations on different continents (separated by a VLB) track a single spacecraft simultaneously. High-rate recordings are made of the downlink's wave fronts by each station, together with precise timing data. After a few minutes, and while still recording, both DSN antennas slew directly to the position of a quasar, which is an extragalactic object whose position is known to a high precision. Then they both slew back to the spacecraft, and end recording a few minutes later. Correlation and analysis of the recorded wavefronts yields a very precise triangulation from which both angular position and radial distance may be determined. VLBI is a distinct DSN data type, different from TRK and TLM. This VLBI observation of a spacecraft is called a "delta DOR," DOR meaning differenced one-way ranging. This process requires knowledge of each station's location with respect to the location of Earth's axis with very high precision. Currently, these locations are known to within 3 cm. Their locations must be determined repeatedly, since the location of the Earth's axis varies several meters over a period of a decade, and the continents drift on the order of centimeters over a few years. Station locations are determined by VLBI measurements using quasars. #### ■ Differenced Doppler <u>Differenced Doppler</u> can provide a measure of a spacecraft's changing three-dimensional position. To visualize this, consider a spacecraft orbiting a distant planet. If the orbit is in a vertical plane
exactly edge on to you at position A, you would observe the downlink to take a higher frequency as it travels towards you. As it recedes away from you to go behind the planet, you observe a lower frequency. Now, imagine a second observer way across the Earth, at position B. Since the orbit plane is *not* exactly edge-on as *that* observer sees it, that person will record a slightly different Doppler signature. If you and the other observer were to compare notes and difference your data sets, you would have enough information to determine both the spacecraft's changing velocity and position in three-dimensional space. Two DSSs separated by a large baseline can do basically this. One DSS provides an uplink to the spacecraft so it can generate a coherent downlink, and then it receives two-way. The other DSS receives a three-way coherent downlink. The differenced data sets are frequently called "two-way minus three-way." These techniques, combined with high-precision knowledge of DSN Station positions, a precise characterization of atmospheric refraction, and extremely stable frequency and timing references (F&T, which is another one of the DSN data types), makes it possible for DSN to measure spacecraft velocities accurate to within hundredths of a millimeter per second, and angular position on the sky to within 10 nano-radians. #### **Optical Navigation** Spacecraft that are equipped with <u>imaging instruments</u> can use them to observe the spacecraft's destination planet or other body against a known background starfield. These images are called <u>opnav</u> images. The observations are carefully planned and uplinked far in advance as part of the command sequence development process. The primary body often appears overexposed in an opnav, so the background stars will clearly visible. When the opnav images are downlinked in telemetry (TLM) they are immediately processed by the navigation team. Interpretation of opnavs provides a very precise data set useful for refining knowledge of a spacecraft's trajectory as it approaches a target. Note that this form of navigation data resides in the TLM data type. ## **Orbit Determination** The process of spacecraft <u>orbit determination</u> solves for a description of a spacecraft's orbit in terms of a state vector (position and velocity) at an epoch, based upon the types of observations and measurements described above. If the spacecraft is enroute to a planet, the orbit is heliocentric; if it is in orbit about a planet, the orbit determination is made with respect to that planet. Orbit determination is an iterative process, building upon the results of previous solutions. Many different data inputs are selected as appropriate for input to computer software, which uses the laws of Newton. The inputs include the various types of navigation data described above, as well as data such as the mass of the sun and planets, their ephemeris and barycentric movement, the effects of the solar wind and other non-gravitational effects, a detailed planetary gravity field model (for planetary orbits), attitude management thruster firings, atmospheric friction, and other factors. The process of orbit determination is fairly taken for granted today. During the effort to launch America's first artificial Earth satellites, the JPL craft Explorers 1 and 2, a room-sized IBM computer was employed to figure a new satellite's trajectory using Doppler data acquired from Cape Canaveral and a few other tracking sites. The late Caltech physics professor Richard Feynman was asked to come to the Lab and assist with difficulties encountered in processing the data. He accomplished all of the calculations by hand, revealing the fact that Explorer 2 had failed to achieve orbit and had come down in the Atlantic ocean. The IBM mainframe was eventually coaxed to reach the same result, hours after Professor Feynman had departed for the weekend. # **Trajectory Correction Maneuvers** Once a spacecraft's solar or planetary orbital parameters are known, they may be compared to those desired by the project. To correct any discrepancy, a <u>Trajectory Correction Maneuver</u> (TCM) may be planned and executed. This adjustment involves computing the direction and magnitude of the vector required to correct to the desired trajectory. An opportune time is determined for making the change. For example, a smaller magnitude of change would be required immediately following a planetary flyby, than would be required after the spacecraft had flown an undesirable trajectory for many weeks or months. The spacecraft is commanded to rotate to the attitude in three-dimensional space computed for implementing the change, and its thrusters are fired for a determined amount of time. TCMs generally involve a velocity change (delta-V) on the order of meters or tens of meters per second. The velocity magnitude is necessarily small due to the limited amount of propellant typically carried. **Orbit Trim Maneuvers** Small changes in a spacecraft's orbit around a planet may be desired for the purpose of adjusting an instrument's field-of-view footprint, improving sensitivity of a gravity field survey, or preventing too much orbital decay. Orbit Trim Maneuvers (OTMs) are carried out generally in the same manner as TCMs. To make a change increasing the An interplanetary spacecraft's course is mostly set once the launch vehicle has fallen away. From that point on, the spacecraft can make only very small corrections in its trajectory by firing small engines or thrusters. Often the largest complement of propellant that a spacecraft carries is reserved for orbit insertion at its destination. altitude of periapsis, an OTM would be designed to increase the spacecraft's velocity when it is at apoapsis. To decrease the apoapsis altitude, an OTM would be executed at periapsis, reducing the spacecraft's velocity. Slight changes in the orbital plane's orientation may also be made with OTMs. Again, the magnitude is necessarily small due to the limited amount of propellant spacecraft typically carry. PRECEDING PAGE | NEXT PAGE HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS | SECTION I | |--| | ENVIRONMENT | | 1 The Solar Syste | | _ | | 2 Reference Systematics Refe | | 3 Gravity & Mec | | 4 Trajectories | <u>em</u> <u>ems</u> <u>chanics</u> 4 Trajectories **5** Planetary Orbits **6** Electromagnetics # **SECTION II** FLIGHT PROJECTS **7** Mission Inception **8** Experiments 9 S/C Classification **10** Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation #### **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network # 13.01 Which of the following DSN data types are important to navigation, for some or all spacecraft? frequency & timing telemetry track VLBI radio science QQC ### 13.02 Doppler data provides what information? distance absolute velocity line-of-site velocity angular position height # 13.03 What can ranging data provide? distance absolute velocity line-of-site velocity frequency # 13.04 Doppler is most accurate when the downlink is... one-way off coherent non-coherent # 13.05 In addition to spacecraft navigation, VLBI provides precise data on... spacecraft speed station locations orbital energy atmospheric temperature #### **SKIP ANSWER CHECK** | HOME GUIDE INC | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |---|---|---| | SECTION I ENVIRONMENT 1 The Solar System | SECTION II FLIGHT PROJECTS 7 Mission Inception | SECTION III FLIGHT OPERATIONS 14 Launch | | 2 Reference Systems | 8 Experiments | 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | 4 Trajectories | 10 Telecommunications | 17 Extended Operations | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | <u>6</u>
Electromagnetics | 12 Science Instruments | | | | 13 Navigation | | # **Chapter 14. Launch Phase** #### **Objectives:** Upon completion of this chapter you will be able to describe the role launch sites play in total launch energy, state the characteristics of various launch vehicles, and list factors contributing to determination of launch windows. You will be able to describe how the launch day of the year and hour of the day affect interplanetary launch energy and list the major factors involved in preparations for launch. ### **Launch Vehicles** To date, the only way to achieve the propulsive energy to successfully launch spacecraft from Earth has been by combustion of chemical propellants, although <u>mass drivers</u> may be useful in the future for launching material from the Moon or other small bodies. There are two groups of rocket propellants, liquids and solids. Many spacecraft launches involve the use of both types of rockets, for example the solid rocket boosters attached to liquid-propelled rockets. Hybrid rockets, which use a combination of solid and liquid, are also being developed. Solid rockets are generally simpler than liquid, but they cannot be shut down once ignited. Liquid and hybrid engines may be shut down after ignition and conceivably could be re-ignited. Expendable launch vehicles, ELV, are used once. The U.S. Space Transportation System, STS, or Shuttle, is a reuseable system. Most of its components are refurbished and reused multiple times. A sampling of launch vehicles of interest to interplanetary mission follows. One measure of comparison among launch vehicles is the amount of mass it can lift to Geosynchronous Transfer Orbit, GTO. Delta <u>Delta</u> is a family of two- or three-stage liquid-propelled ELVs, produced originally by McDonnell Douglas, now owned by Boeing, that use multiple strap-on solid boosters in several configurations, with liquid-propellant engines powering the main stages. The Delta II, whose liquid-propellant engines burn kerosene and liquid oxygen (LOX), offers payload delivery options that range from about 1-2 metric tons to geosynchronous transfer orbit (GTO) and 2.7 to 5.8 metric tons to low-Earth orbit (LEO). Delta II vehicles placed the German X-Ray Observatory ROSAT into orbit in 1990, launched the Japanese Geotail satellite in 1992, and sent Pathfinder and Sojourner to Mars in 1996. The Delta II also launched the majority of the 48-satellite Globalstar communications network, among many others. A larger medium-lift Delta-III has begun service, and a medium- to heavy-lift Delta IV family, whose liquid-propellant main engine burns liquid hydrogen and LOX, will enter service in the near future. In fact, <u>Space Launch Complex 37</u> at the Kennedy Space Center (KSC), where Viking and Voyager began their journeys, has become the site for the new Delta-IV launch facility. #### Titan Titan IV, produced and launched for the U.S. Air Force by Lockheed Martin, is the nation's most powerful ELV. Titan IV is capable of placing 18,000 kg into LEO, over 14,000 kg into polar orbit, or 4,500 kg into a geostationary transfer orbit (GTO). A Titan III launched the Viking spacecraft to Mars in 1975. A Titan IV, equipped with two upgraded solid rocket boosters and a Centaur upper stage, launched the Cassini spacecraft on its gravity-assist trajectory to Saturn in 1997. Titan III vehicles launched JPL's Voyager 1 and 2 in 1977, and the Mars Observer spacecraft from the Kennedy Space Center (KSC), TITAN-IV Cape Canaveral in 1992. Titan IV consists of two solid-propellant stage-zero motors, a liquid propellant 2-stage core and a 16.7-ft diameter payload fairing. Upgraded 3-segment solid rocket motors increase the vehicle's payload capability by approximately 25%. The Titan IV configurations include a cryogenic Centaur upper stage, a solid-propellant Inertial Upper Stage (IUS), or no upper stage. Titan IV rockets are launched from Vandenberg Air Force Base, California, or Cape Canaveral Air Station, Florida. #### Atlas Atlas, originally produced by General Dynamics Corporation and now owned by Lockheed Martin, is a liquid-propelled ELV which accommodates a variety of upper stages. Its engines burn kerosene and LOX. With a Centaur upper stage, Atlas is capable of placing 4000 kg into LEO. An Atlas/Centaur launched the Infrared Astronomical Satellite (IRAS) into Earth orbit in 1985, and an Atlas is planned to launch the Space Infrared Telescope Facility (SIRTF) into solar orbit in 2002. #### Ariane Ariane has been a system of highly reliable liquid-propelled ELVs combined with a selectable number of solid strap-on boosters or liquid boosters. They are launched from the Kourou Space Center in French Guiana by Arianespace, the first space transportation company in the world, composed of a consortium of 36 European aerospace companies, 13 European banks, and the Centre National d'Études Spatiales (CNES). Ariane 4 is capable of placing 4900 kg in GTO. It launched the Topex/Poseidon spacecraft into a high-altitude Earth orbit in 1992. Ariane 4 has logged 45 successful flights in a row as of December 2000. Ariane 5 entered service with a 6.5 metric ton payload capability to geostationary orbit, and is planned to evolve into a family of launchers targeted to grow to 12 tons by 2005. In 1996, the maiden flight of the Ariane 5 launcher ended in a failure. In 1997 Ariane 5's second test flight succeeded, and it is now in service. **ARIANE 5** #### Proton The <u>Proton</u> is a liquid-propellant ELV originally developed by the Soviet CIS Interkosmos. It is launched by Russia from the Baykonur Kosmodrome in Kasakhstan, and is capable of placing 20,000 kg into LEO. With an outstanding reliability record and over 200 launches, the Proton is the largest Russian launch vehicle in operational service and is used as a three-stage vehicle primarily to launch large space station type payloads into low earth orbit, and in a four-stage configuration to launch spacecraft into GTO and interplanetary trajectories. ### Soyuz The proven <u>Soyuz</u> launch vehicle is one of the world's most reliable and frequently used launch vehicles. As of December 2000, more than 1,630 missions have been performed by Soyuz launchers to orbit satellites for telecommunications, Earth observation, weather and scientific missions, as well as for piloted flights. Soyuz is being evolved to meet commercial market needs, offering payload lift capability of 4,100 kg. to 5,500 kg. into a 450-km. circular orbit. Souyz is marketed commercially by Starsem, a French-registered company. **SOYUZ** ### Space Transportation System America's <u>Space Shuttle</u>, as the Space Transportation System (STS) is commonly known, is a reusable launching system whose main engines burn liquid hydrogen and LOX. After each flight, its main components, except the external propellant tank, are refurbished to be used on future flights. The STS can put payloads of up to 30,000 kg in LEO. With the appropriate upper stage, spacecraft may be boosted to a geosynchronous orbit or injected into an interplanetary trajectory. Galileo, Magellan, and Ulysses were launched by the STS, using an Inertial Upper Stage (IUS), which is a two-stage solid-propellant vehicle. The STS may be operated to transport spacecraft to orbit, perform satellite rescue, assemble and service the International Space Statio SPACE SHUTTLE ATLANTIS and service the International Space Station, and to carry out a wide variety of scientific missions ranging from the use of orbiting laboratories to small self-contained experiments. #### Smaller Launch Vehicles Many NASA experiments, as well as commercial and military payloads, are becoming smaller and lower in mass, as the art of miniaturization advances. The range of payload mass broadly from 100 to 1300 kg is becoming increasingly significant as smaller spacecraft are designed to have more operational capability. The market for launch vehicles with capacities in this range is growing. Pegasus is a small, winged solid-propellant ELV built and flown by Orbital Sciences Corporation. It resembles a cruise missile, and is launched from under the fuselage of an aircraft while in flight at high altitude, currently Orbital Sciences' L-1011. Pegasus can lift 400 kg into LEO. **PEGASUS** <u>Taurus</u> is Orbital Sciences Corporation's four-stage ground-launched, transportable vehicle capable of putting 1200 kg into LEO or 350 kg in GTO. Scout was a ground-launched, reliable solid-propellant ELV capable of placing 200 kg into LEO. It is no longer in use. ### **Launch Sites** If a spacecraft is launched from a site near Earth's equator, it can take optimum advantage of the Earth's substantial rotational speed. Sitting on the launch pad near the equator, it is already moving at a speed of over 1650 km per hour relative to Earth's center. This can be applied to the speed required to orbit the Earth (approximately 28,000 km per hour). Compared to a launch far from the equator, the equator-launched vehicle would need less propellant, or a given vehicle can launch a more massive spacecraft. A spacecraft intended for a high-inclination Earth orbit has no such free ride, though. The launch vehicle must provide a much larger part, or all, of the energy for the spacecraft's orbital speed, depending on the inclination. For interplanetary launches, the vehicle will have to take advantage of Earth's orbital motion as well, to accommodate the limited energy available from today's launch vehicles. In the diagram below, the launch vehicle is accelerating generally in the direction of the Earth's orbital motion (in addition to using Earth's rotational speed), which has an average velocity of approximately 100,000 km per hour along its orbital path. CLICK IMAGE TO START / STOP ANIMATION In the case of a spacecraft embarking on a Hohmann interplanetary transfer orbit, recall the Earth's orbital speed represents the speed at aphelion or perihelion of the transfer
orbit, and the spacecraft's velocity merely needs to be increased or decreased in the tangential direction to achieve the desired transfer orbit. The launch site must also have a clear pathway downrange so the launch vehicle will not fly over populated areas, in case of accidents. The STS has the additional constraint of requiring a landing strip with acceptable wind, weather, and lighting conditions near the launch site as well as at landing sites across the Atlantic Ocean, in case an emergency landing must be attempted. Launches from the east coast of the United States (the Kennedy Space Center at Cape Canaveral, Florida) are suitable only for low inclination orbits because major population centers underlie the trajectory required for high-inclination launches. High-inclination launches are accomplished from Vandenberg Air Force Base on the west coast, in California, where the trajectory for high-inclination orbits avoids population centers. An equatorial site is not preferred for high-inclination orbital launches. They can depart from any latitude. Complex ground facilities are required for heavy launch vehicles, but smaller vehicles such as the Taurus can use transportable facilities. The Pegasus requires none once its parent airplane is in flight. ### **Launch Windows** A launch window is the span of time during which a launch may take place while satisfying the constraints imposed by safety and mission objectives. For an interplanetary launch, the window is constrained typically within a number of weeks by the location of Earth in its orbit around the sun, in order to permit the vehicle to use Earth's orbital motion for its trajectory, while timing it to arrive at its destination when the target planet is in position. The launch window may also be constrained to a number of hours each day, in order to take advantage of Earth's rotational motion. In the illustration above, the vehicle is launching from a site near the Earth's terminator which is going into night as the Earth's rotation takes it around away from the sun. If the example in the illustration were to launch in the early morning hours on the other side of the depicted Earth, it would be launching in a direction opposite Earth's orbital motion. These examples are over-simplified in that they do not differentiate between launch from Earth's surface and injection into interplanetary trajectory. It is actually the latter that must be timed to occur on the proper side of Earth. Actual launch times must also consider how long the spacecraft needs to remain in low Earth orbit before its upper stage places it on the desired trajectory (this is not shown in the illustration). The daily launch window may be further constrained by other factors, for example, the STS's emergency landing site constraints. Of course, a launch which is to rendezvous with another vehicle in Earth orbit must time its launch with the orbital motion of that object. This has been the case with the Hubble Space Telescope repair missions executed in December 1993, February 1997, and December 1999. # **Preparations For Launch** ATLO stands for Assembly, Test, and Launch Operations. This period is usually scheduled very tightly. Spacecraft engineering components and instruments are all delivered according to plan where the spacecraft first takes shape in a large <u>clean room</u>. They are integrated and tested using computer programs for command and telemetry very much like those that will be used in flight. Communications are maintained with the growing spacecraft nearly continuously throughout ATLO. The spacecraft is transported to an <u>environmental test</u> lab where it is installed on a shaker table and subjected to launch-like vibrations. It is installed in a thermal-vacuum chamber to test its thermal properties, all the while communicating with engineers. Adjustments are made as needed in thermal blanketing, and thermal-vacuum tests may be repeated. Then the spacecraft is transported to the launch site. The spacecraft is sealed inside an environmentally controlled carrier for the trip, and internal conditions are carefully monitored throughout the journey whether it is by truck or airplane. Once at the launch site, additional testing takes place. Propellants are loaded aboard. Any pyrotechnic devices are armed. Then the spacecraft is mated to its upper stage, and the stack is hoisted and mated atop the launch vehicle. Clean-room conditions are maintained atop the launch vehicle while the payload shroud is put in place. Pre-launch and launch operations of a JPL spacecraft are typically carried out by personnel at the launch site while in direct communication with persons at the Space Flight Operations Facility at JPL. Additional controllers and engineers at a different location are typically involved with the particular upper stage vehicle, such as the Lockheed personnel at Sunnyvale, California, controlling the inertial upper stage (IUS). The spacecraft's telecommunications link is maintained through ground facilities close to the launch pad prior to launch and during launch, linking the spacecraft's telemetry to controllers and engineers at JPL. Command sequences must be loaded aboard the spacecraft, verified, and initiated at the proper time prior to launch. Spacecraft health must be monitored, and the launch process interrupted if any critical tolerances are exceeded. Once the spacecraft is launched, the DSN begins tracking, acquiring the task from the launch-site tracking station, and the cruise phase is set to begin. CASSINI ATOP LAUNCH VEHICLE Click image for larger view. ### PRECEDING PAGE | NEXT PAGE HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS #### SECTION I **ENVIRONMENT** 1 The Solar System 2 Reference Systems **3** Gravity & Mechanics **4** Trajectories **5** Planetary Orbits **6** Electromagnetics #### **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification **10** Telecommunications 11 Onboard Systems **12** Science Instruments **13** Navigation #### SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network # **Chapter 14. Launch Phase** # 14.01 Compared to launch from high latitude, launch from near the equator can take advantage of... Less atmosphere Lower gravity Earth's rotational speed for low inclination orbits Earth's rotational speed for polar orbits Warmer climate # 14.02 Launches from the U.S. east coast are suitable for launches <u>only</u> to... Geostationary orbit GTO Low-inclination trajectories High-inclination orbits Polar orbits Interplanetary trajectories ### 14.03 Interplanetary launches need to take best advantage of Earth's... Diameter Orbital motion Polar precession Nutation # 14.04 Solid propellant rockets cannot be operationally... Stored Jettisoned Shut down Ignited ### **SKIP ANSWER CHECK** | HOME GUIDE IND | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |---------------------------|-------------------------------|----------------------------------| | SECTION I
ENVIRONMENT | SECTION II
FLIGHT PROJECTS | SECTION III
FLIGHT OPERATIONS | | <u>1 The Solar System</u> | <u>7</u> Mission Inception | 14 Launch | | 2 Reference Systems | <u>8</u> Experiments | 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | 4 Trajectories | 10 Telecommunications | 17 Extended Operations | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | <u>6</u> Electromagnetics | 12 Science Instruments | | | | 13 Navigation | | # **Chapter 15. Cruise Phase** ### **Objectives:** Upon completion of this chapter, you will be able to list the major factors involved in cruise phase, including spacecraft checkout and characterization, and preparation for encounter. You will be able to characterize typical daily flight operations. Cruise phase is bounded by launch phase at the beginning and encounter phase at the end. It may be as short as a few months, or it may span years with the spacecraft looping the sun to perform gravity-assist planetary flybys. It is a time during which ground system upgrades and tests may be conducted, and spacecraft flight software modifications are implemented and tested. Cruise operations for JPL missions are typically carried out from the Space Flight Operations Facility at JPL. # **Spacecraft Checkout and Characterization** After launch, the spacecraft is commanded to configure for cruise. Appendages that might have been stowed in order to fit within the launch vehicle are deployed either fully or to intermediate cruise positions. Telemetry is analyzed to determine the health of the spacecraft, indicating how well it survived its launch. Any components that appear questionable might be put through tests specially designed and commanded in or near real time, and their actual state determined as closely as possible by subsequent telemetry analysis. During the cruise period, additional command sequences are uplinked and loaded aboard for execution, to replace the command sequence exercised during launch. These take the spacecraft through its routine cruise operations, such as tracking Earth with its HGA and monitoring celestial references for attitude control. Flight team members begin to get the feel of their spacecraft in flight. Commonly, unforeseen problems arise, and the onboard fault protection algorithms receive their inevitable tests; the spacecraft will, more likely than not, go into safing or contingency modes (as described in Chapter 11), and nominal cruise operations must be painstakingly recovered. TCMs are executed to fine tune the trajectory. As the spacecraft nears its target, or earlier during designated checkout periods, the science instruments are powered on, exercised and calibrated. # **Real-time Commanding** Frequently, command sequences stored on the spacecraft during cruise or other phases must be augmented by commands sent and executed in or near real time, as new activities become
desirable, or, rarely, as mistakes are discovered in the on-board command sequence. There are risks inherent in real-time commanding. It is possible to select the wrong command file for uplink, especially if an extensive set of files exists containing some similar or anagrammatic filenames. Also, it is possible that a command file built in haste may contain an error. Planned sequences of commands (generally just called "sequences") are typically less risky than real-time commands because they benefit from a long process of extensive debate and selection, testing and checking and simulation prior to uplink. Some flight projects permit real-time commanding of a sort wherein command mnemonics are entered at the command system keyboard in real time and uplinked directly. Other projects do not permit this inherently high-risk operation because even a typographical error might pass undetected and cause a problem. These factors may limit the desirability of undertaking many activities by real-time commands, but the necessity, as well as the convenience, of at least some form of real-time commanding frequently prevails. # **Typical Daily Operations** Usually, at least one person is on duty at JPL during periods when DSN is tracking the spacecraft, to watch realtime data from the spacecraft and respond to any anomalous indications. The person so designated is typically the mission controller or Ace. The Ace is a person on the Mission Control Team or Real-time Operations Team who is the single point of contact between the entire flight team, consisting of, for example, a Spacecraft Team, a Navigation Team, Science Teams and other teams on the one hand, and teams external to the flight project such as DSN, Facilities Maintenance, multimission Data Systems Operations Team (DSOT), Ground Communications Facility (GCF), AMMOS, System Administration, and others on the other hand. "Ace" is not an acronym, despite attempts to make it one. It simply refers to one single point of contact for a project's real-time flight operations, and is not too inappropriately a pun for an expert pilot. Some Aces are multimission personnel, and it is possible for one to be serving more than one flight project at a time. In 1993, one famous Ace was in charge of Magellan, Voyager 1, Voyager 2, and Mars Observer simultaneously. The Ace executes commanding, manages the ground systems, insures the capture and delivery of telemetry, monitor, and tracking data, watches for alarms, evaluates data quality, performs limited real-time analyses to determine such things as maneuver effectiveness and spacecraft health, and coordinates the activities of the DSN and other external teams in support of the flight project(s). Typically, a large portion of the Ace's interactions are with the Spacecraft Team, the DSN, and the DSOT. On the infrequent occasions when the Ace detects an anomaly and rules out any false indications, he or she proceeds to invoke an anomaly response plan approved by the flight project. That plan is then followed by appropriate flight team members until the anomaly is resolved and nominal operations are restored. ### **Monitoring Spacecraft and Ground Events** In order to tell whether everything is proceeding nominally, an Ace needs an accurate list of expected events to compare with spacecraft events as they are observed in real time. For example, the spacecraft's downlink signal may change or disappear. Was it planned, or is this an anomaly? Such a list is also required for the purpose of directing DSN station activity, and for planning command uplinks and other real-time operations. For example, if we uplink a command at 0200 UTC, will the spacecraft receive it, or will the spacecraft be off Earthpoint or behind a planet at that time? That list is called the sequence of events, SOE. It contains a list of spacecraft events being commanded from the onboard sequence, and DSN ground events such as the beginning and end of tracking periods, transmitter operations, and one-way light times. Here is a <u>sample SOE page</u> for reference, and a discussion of the various <u>time</u> <u>conventions</u> used in the SOE. Compiling an SOE begins with a list of the commands that will be uplinked to the spacecraft's sequencing memory, and that will execute over a period of typically a week or a month or more into the future. The list of commands, sorted into time-order, comes from engineers responsible for spacecraft subsystems, scientists responsible for their instruments' operations, and from others. Times for the events' execution are included with the commands. The team responsible for generating the command sequence then creates a spacecraft event file (SEF). This file goes on as an input to the remainder of the sequence generation process for eventual uplink to the spacecraft. A copy of the SEF also goes to the sequence of events generator software, SEGS, where commands are adjusted for light time, and are merged with DSN station schedule information and events. Station viewperiod files and light time files are typically provided by the navigation team. One of SEGS output products is the DSN keyword file (DKF). This file is provided to the DSN, who then combines it with similar listings from other projects to create an SOE for each particular station. SEGS outputs the SOE in tabular form, and also arranges most of the same information into a high-level graphics product, the space flight operations schedule, SFOS. Users can view each of these products, or create hardcopy, using SEGS viewing and editing software. The illustration below shows activities typical for the generation of SOE products. ### **Tracking the Spacecraft in Flight** DSN tracking requirements and schedules have been negotiated months or even years in advance of launch. Now the spacecraft is in flight. Near the time when the spacecraft will be rising in the sky due to Earth's rotation, its assigned DSN tracking activity begins. During the period allotted for "precal" activities, the Network Monitor and Control (NMC) operator sits down at his or her console in the Signal Processing Center (SPC) of one the DSN's three Deep Space Communications Complexes (DSCC). The operator will be controlling and monitoring the assigned antenna, called a Deep Space Station (DSS), an assigned set of computers that control its pointing, tracking, commanding, receiving, telemetry processing, ground communications, and other functions. This string of equipment from the antenna to the project people at JPL is called a link, referring to the two-way communications link between the spacecraft and the project. Prior to the NMC operator's arrival, the Complex Monitor and Control (CMC) operator will have assigned, via directives sent out to the station components over a local area network (LAN), applicable equipment to become part of the link. Now the NMC operator begins sending more directives over the LAN to configure each of the link components specifically for the upcoming support. Predict sets containing uplink and downlink frequencies and Doppler bias ramp rates, pointing angles and bit rates, command modulation levels, and hundreds of other parameters are all sent to the link components. Any problems are identified and corrected. At the end of the precal period, the NMC operator checks the DSS area via closed circuit TV, makes a warning announcement over its outdoor loudspeakers, and the DSS antenna swings to point precisely to the spacecraft's location in the eastern sky. The transmitter comes on, and red beacons on the antenna illuminate as a warning of the microwave power present. Upon locking the receivers, telemetry, and tracking equipment to the spacecraft's signal, the link is established. This marks the Beginning of Track (BOT) and Acquisition of Signal (AOS). The Ace interacts with the NMC operator as needed during the course of the track to be sure the flight project's objectives are met. Depending on the nature of the spacecraft's activities, there may be Loss of Signal (LOS) temporarily when the spacecraft turns away to maneuver, or if it goes into occultation behind a planet. This LOS would presumably be followed by another AOS when the maneuver or occultation is complete. During the day, the DSS antenna moves slowly to follow, or track, the spacecraft as the Earth rotates. Near the end of the NMC operator's shift, the DSS is pointing lower on the western horizon. At the same time, another NMC operator inside the SPC of another DSCC a third of the way around the world, is conducting a precal as the same spacecraft is rising in the east. To accomplish an uplink transfer, the setting DSS's transmitter is turned off precisely two seconds after the rising DSS's transmitter comes on. Scheduled End of Track (EOT) arrives, and the NMC operator at the setting DSS begins postcal activities, idling the link components and returning control of them to the CMC operator. ### **Preparation for Encounter** Command loads uplinked to the spacecraft are valid for varying lengths of time. So-called quiescent periods such as the lengthy cruises between planets require relatively few activities, and a command load may be valid for several weeks or even months. By comparison, during the closest-approach part of a flyby encounter of a prime target body, a very long and complex load may execute in only a matter of hours. Prior to the Voyagers' encounters, the spacecraft was generally sent a command sequence that took it through activities simulating the activities of encounter. Today, this rehearsal is mostly accomplished with ground-based simulation, using simulated data broadcast to users. Changes in data rate and format, and spacecraft maneuvers, are designed to put the flight team and ground systems through their paces during a realistic simulation, in order to provide some practice for readiness, to shake down the systems and procedures, and to try to uncover flaws or areas for improvement. Instrument
calibrations are undertaken prior to encounter, and again afterwards, to be sure that experiments are being carried out in a scientifically controlled fashion. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS **SECTION I** **ENVIRONMENT** 1 The Solar System 2 Reference Systems **3** Gravity & Mechanics **4** Trajectories **5** Planetary Orbits <u>**6**</u> Electromagnetics **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification **10** Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network # **Chapter 15. Cruise Phase** # 15.01 Which of the following are to be reasonably expected during Cruise phase? Asteroid impacts Deployment of appendages Unplanned safing Realtime commanding Exhaustion of consumables Prime target flyby ### 15.02 Nominal events during a DSN pass include... **BOT** GTO **AOS** **EOM** LOS ЕОТ **TCM** #### 15.03 Science instrument calibrations are... Practice observations Expendable Essential to the scientific method Never performed in Cruise Phase ### **SKIP ANSWER CHECK** | HOME GUIDE INI | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |---|---|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter 17 Extended Operations 18 Deep Space Network | ### **Objectives:** Upon completing this chapter, you will be able to describe major factors involved in flyby operations, planetary orbit insertion, planetary system exploration, planet mapping, and gravity field surveying. You will be able to describe the unique opportunities for science data acquisition presented by occultations, and problems involved. You will be able to describe the concepts of using aerobraking to alter orbital geometry or decelerate for atmospheric entry, descent and landing. The term "encounter" is used in this chapter to indicate the high-priority data-gathering period of operations for which the mission was intended. It may last a few months or weeks or less as in the case of a flyby encounter or atmospheric probe entry, or it may last a number of years as in the case of an orbiter. Encounter operations are typically carried out from the Space Flight Operations Facility at JPL, Buildings 230 and 264. # **Flyby Operations** All the interplanetary navigation and course corrections accomplished during cruise result in placement of the spacecraft at precisely the correct point, and at the correct time to carry out its encounter observations. A flyby spacecraft has a limited opportunity to gather data. Once it has flown by its target, it cannot return to recover lost data. Its operations are planned years in advance of the encounter, and the plans are refined and practiced in the months prior to the encounter date. Sequences of commands are prepared by the flight team to carry out operations in various phases of the flyby, depending on the spacecraft's distance from its target. During each of the six Voyager encounters, the phases were titled observatory phase, far encounter phase, near encounter phase, and post encounter phase. They may have different names for different spacecraft, but many of the functions most likely will be similar. In a flyby operation, observatory phase (OB) begins when the target can be better resolved in the spacecraft's optical instruments than it can from Earth-based instruments. This phase generally begins a few months prior to the date of flyby. OB is marked by the spacecraft being completely involved in making observations of its target, and ground resources are completely operational in support of the encounter. This phase marks the end of interplanetary cruise phase. Ground system upgrades and tests have been completed, spacecraft flight software modifications have been implemented and tested, and the encounter command sequences have been placed on board. Far encounter phase (FE) begins when the full disc of a planet can no longer fit within the field of view of the instruments. Observations are designed to accommodate parts of the planet rather than the whole disc, and to take best advantage of the higher resolution available. Near encounter phase (NE) includes the period of closest approach to the target. It is marked by intensely active observations by all of the spacecraft's science experiments, including onboard instruments, and by radio science investigations. It includes the opportunity to obtain the highest resolution data about the target. Radio science observations during NE include ring plane measurements during which ring structure and particle sizes can be determined, celestial mechanics observations that determine the planet's or satellites' mass, and atmospheric occultations to determine atmospheric structures and composition. While observations must be planned in detail many months or years prior to NE, precise navigation data may not be available to command accurate pointing of Planetary flyby Incoming trajectory CLICK IMAGE TO START / STOP ANIMATION the instruments until only a few days before the observations execute. So, late updates to stored parameters on the spacecraft can be made to supply the pointing data just in time. OPNAVs, discussed in Chapter 13, may be an important navigational input to the process of determining values for late parameter updates. Some observations of the target planet or its environs may be treated as reprogrammable late in the encounter, in order to observe features that had not been seen until FE. During the end of FE or the beginning of NE, a bow shock crossing may be identified through data from the magnetometer, the plasma instrument and plasma wave instrument as the spacecraft flies into a planet's magnetosphere and leaves the solar wind. When the solar wind is in a state of flux, these crossings may occur again and again as the magnetosphere and the solar wind push back and forth over millions of kilometers. Post encounter phase (PE) begins when NE completes, and the spacecraft is receding from the planet. It is characterized by day after day of observations of a diminishing, thin crescent of the planet just encountered. This is the opportunity to make extensive observations of the night side of the planet. After PE is over, the spacecraft stops observing its target planet, and returns to the activities of cruise phase. DSN resources are relieved of their continuous support of the encounter, and they are generally scheduled to provide less frequent coverage to the mission during PE. After encounter, instrument calibrations are repeated to be sure that any changes in the instrument's state are accounted for. ### **Planetary Orbit Insertion Operations** The same type of highly precise interplanetary navigation and course correction used for flyby missions also apply during cruise for an orbiter spacecraft. This process places the spacecraft at precisely the correct location at the correct time to enter into planetary orbit. Orbit insertion requires not only the precise position and timing, but also controlled deceleration. As the spacecraft's trajectory is bent by the planet's gravity, the command sequence aboard the spacecraft places the spacecraft in the correct attitude, and fires its engine(s) at the proper moment and for the proper duration. Once the retro-burn has completed, the spacecraft has been captured into orbit by its target planet. If the retro-burn were to fail, the spacecraft would continue to fly on past the planet as though it were a flyby mission. It is common for the retro-burn to occur on the far side of a planet as viewed from Earth, with little or no data available until well after the burn has completed and the spacecraft emerges from behind the planet, successfully in orbit. CLICK IMAGE TO START / STOP ANIMATION Once inserted into a highly elliptical orbit, Mars Global Surveyor continued to adjust its orbit via aerobraking (discussed later in this chapter) near periapsis to decelerate the spacecraft further, causing a reduction in the apoapsis altitude, and establishing a close circular orbit at Mars. Galileo used a gravity assist from a close flyby of Jupiter's moon Io to decelerate, augmenting the deceleration provided by the 400 N rocket engine. Thereafter, additional OTMs over a span of two years were used to vary the orbit slightly and choreograph multiple encounters with the Galilean satellites and the magnetosphere. # System Exploration or Planetary Mapping At least two broad categories of orbital operations may be identified: system exploration and planetary mapping. Exploring a planetary system includes making observations of the planet, its atmosphere, its satellites, its rings, and its magnetosphere during a tour typically a few years or more in duration, using the spacecraft's compliment of remote-sensing and direct-sensing instruments. On the other hand, mapping a planet means concentrating observations on the planet itself, using the spacecraft's instruments to obtain data mainly from the planet's surface. Galileo explored the entire Jovian system, including its satellites, rings, magnetosphere, the planet, its atmosphere, and its radiation environment. At Saturn, Cassini will accomplish a similar exploratory
mission, examining the planet's atmosphere, rings, magnetosphere, icy satellites, and the large satellite Titan with its own atmosphere. Magellan, a planetary mapper, covered 99% the surface of Venus in great detail using SAR imaging, altimetry, radiometry, and gravity. Mars Global Surveyor is mapping the surface of its planet also, using imaging, altimetry, spectroscopy, and a gravity field survey. An orbit of low inclination at the target planet (equatorial, for example) is well suited to a system exploration mission, because it provides repeated exposure to satellites orbiting within the equatorial plane, as well as adequate coverage of the planet and its magnetosphere. An orbit of high inclination (polar, for example) is better suited for a mapping mission, since the target planet or body will rotate fully below the spacecraft's orbit, providing eventual exposure to every part of the planet's surface. In either case, during system exploration or planetary mapping, the orbiting spacecraft is involved in an extended encounter period, requiring continuous or dependably regular support from the flight team members, the DSN, and other institutional teams. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS **SECTION I SECTION II SECTION III ENVIRONMENT** 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics **4** Trajectories **5** Planetary Orbits **6** Electromagnetics FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification **10** Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations **18** Deep Space Network ### **Occultations** Occultations provide unique opportunities for experiments. Occultations of interest include the earth, the sun, or another star disappearing behind a planet, behind its rings, or behind its atmosphere, as viewed from the spacecraft. During the one-time only occultation opportunity by a planet during a flyby encounter, or repeatedly during an orbital mission, onboard optical instruments may make unique observations. For example, an ultraviolet spectrometer may watch the sun as it disappears behind a planet's atmosphere, and obtain data on the composition and structure of the atmosphere. A photometer watching a bright distant star as it passes behind a ring system yields high-resolution data on the sizes and structures of the ring and its particles. STELLAR RING OCCULTATION INGRESS (Simulated star as viewed from spacecraft) As discussed in Chapter 8 under radio science occultations, the spacecraft's radio signal may be observed on Earth as the spacecraft passes behind a planet, and this yields data on the composition and structure of the atmosphere. Radio science ring occultations provide data on the ring system's structure and composition. Recall that radio science investigations require a two- or three-way coherent mode, receiving an uplink from the DSN as discussed in Chapter 10. However, this is generally possible on ingress only; the spacecraft is likely to lose the uplink from DSN when it passes behind the planet, and therefore cannot maintain a coherent downlink. For this reason, some spacecraft are equipped with an Ultra Stable Oscillator (USO) in a temperature-controlled "oven" on the spacecraft which is capable of providing a fairly stable downlink frequency when an uplink is not available. The first occultation experiment was proposed when JPL was characterizing the precise refraction effects of Earth's atmosphere, with its known structure and composition, for the purpose of tracking spacecraft. The experimenter realized that measurements of the refraction effects induced by <u>another</u> planet's atmosphere could be used to "reverse-engineer" its structure and composition! Incidentally, occultation may be one method of identifying <u>extrasolar planets</u>. Some Earth-based telescopes, and proposed orbiting instruments, are equipped with an occulting disk to block out the light of the central star and facilitate examining the star's planetary disk. Scattered light in the instrument limits its effectiveness, but studies exist for orbiting a separate <u>large occulting disk</u> to improve the experiment's effectiveness from Earth-based or orbiting telescopes. # **Gravity Field Surveying** Planets are not perfectly spherical. Terrestrial planets are rough-surfaced, and most planets are at least slightly oblate. Thus they have variations in their mass concentrations, sometimes associated with mountain ranges or other features visible on the surface. A gravity field survey, as introduced in Chapter 8, identifies local areas of a planet that exhibit slightly more or slightly less gravitational attraction. These differences are due to the variation of mass distribution on and beneath the surface. There are two reasons for surveying the gravity field of a planet. First, highly accurate navigation in orbit at a planet requires a good model of variations in the gravity field, which can be obtained by such a survey. Second, gravity field measurements have the unique advantage of offering scientists a "view" of mass distribution both at and below the surface. They are extremely valuable in determining the nature and origin of features identifiable in imaging data. JPL has pioneered the field of mapping planetary mass concentrations. Application of these techniques to Earth helps geologists locate petroleum and mineral deposits, as well as provide insight to geological processes at work. To obtain gravity field data, a spacecraft is required to provide only a downlink carrier signal coherent with a highly stable uplink from the DSN. It may be modulated or unmodulated. After the removal of known Doppler shifts induced by planetary motions and the spacecraft's primary orbit and other factors, the residual Doppler shifts are indicative of miniscule spacecraft accelerations resulting from variations in mass distribution at and below the surface of the planet. The gravity feature size that can be resolved is roughly equal to the spacecraft's altitude; with a 250-km altitude, a spacecraft should resolve gravity features down to roughly 250 km in diameter. VENUS GRAVITY FIELD VS. TOPOGRAPHY Click image for info. With an X-band (3.6 cm wavelength) uplink received at a spacecraft, and a coherent X-band downlink, spacecraft accelerations can be measured to tens of micrometers per second squared. This translates to a sensitivity of milligals in a planetary gravity field. (One gal represents a gravitational acceleration of 1 cm/sec²). The best gravity field coverage is made from low circular orbit. Mars Global Surveyor will be conducting a gravity field survey from circular orbit as one of its first-priority investigations. Magellan's orbit was elliptical during its primary mission, and meaningful gravity data could be taken only for that portion of the orbit plus and minus about 30 degrees true anomaly from periapsis, which occurred at about 10 degrees north latitude. After aerobraking (see below) to a low circular orbit, Magellan conducted a high-resolution gravity field survey of the entire planet. # **Atmospheric Entry and Aerobraking** Aerobraking is the process of decelerating by converting velocity mostly into heat through friction with a planetary atmosphere. Galileo's atmospheric probe is a typical example of an atmospheric entry and aerobraking mission. The probe was designed with an aeroshell that sustained thousands of degrees of heat as it entered the Jovian atmosphere. In fact its aeroshell reached a higher temperature than the sun's photosphere. It decelerated at hundreds of Gs, until it reached a speed where its parachute became effective. At that time, the spent aeroshell was discarded, and the probe successfully carried out its experiments. GALILEO JUPITER PROBE The Magellan spacecraft was not designed for atmospheric entry. However, the periapsis altitude of Magellan's orbit was lowered by the use of propulsive maneuvers into the upper reaches of Venus's atmosphere near 140 km above the surface. This is still high above the cloudtops, which are at about 70 km. Flying at this altitude induced deceleration via atmospheric friction during the portion of the spacecraft's orbit near periapsis, thus reducing the height to which it could climb to apoapsis (recall the discussions in Chapter 3). The solar array, consisting of two large square panels, was kept flat-on to the velocity vector during each pass through the atmosphere, while the information. HGA trailed in the wind. The solar array reached a maximum of 160° C, and the HGA a maximum of 180° C. After approximately 70 earth days and one thousand orbits of encountering the free molecular flow and decelerating a total of about 1250 m/sec, the apoapsis altitude was lowered to a desirable altitude. The periapsis altitude was then raised to achieve a nearly circular orbit. The objectives of this aerobraking experiment were to demonstrate the use of aerobraking for use on future missions, to characterize the upper atmosphere of Venus, and to be in position to conduct a full-planet gravity field survey from a nearly circular orbit. Click the cartoon at left for further ### **Descent and Landing** Landing on a planet is generally accomplished first by aerobraking while entering the planet's atmosphere under the protection of an aeroshell. From there, the lander might be designed to parachute to the surface, or to use a propulsion system to soft-land, or both, as did the Viking landers on Mars. In addition to aeroshell, parachutes and propulsion, the Mars Pathfinder spacecraft used airbags to cushion its impact. This technique will be repeated with the Mars <u>'03 mission</u>. The Soviet Venera spacecraft parachuted to the surface of Venus by means of a small rigid disk integral with the spacecrafts' structure which helped slow their descent sufficiently through the
very dense atmosphere. A crushable foot pad absorbed the energy from their final impact on the surface. Descent through the atmosphere may be the prime mission of a probe, such as <u>Huygens</u> at Titan. If the Huygens probe survives landing, it may continue to make observations and relay data for up to half an hour, but observations made during the descent constitute its prime mission. JPL's <u>Surveyor</u> missions landed on the Moon via propulsive descent, coming to rest on crushable foot pads at the lunar surface. For a possible future mission, some members of the international science community desire to land a network of seismometer-equipped spacecraft on the surface of Venus to measure seismic activity over a period of months or years. ### **Balloon Tracking** Once deployed within a planet's atmosphere, having undergone atmospheric entry operations as discussed above, a balloon may ride with the wind and depend on the DSN to directly track its progress, or it can use an orbiting spacecraft to relay its data to Earth. In 1986, DSN tracked the balloons deployed by the Soviet Vega spacecraft when it was on its way to encounter comet Halley. The process of tracking the balloon across the disc of Venus yielded data on the circulation of the planet's atmosphere. The planned Mars Balloon is designed to descend to just above the surface. Carrying an instrument package, including a camera, within a long, snake- or rope-like structure, it will rise and float when heated by the daytime sunlight, and will sink and allow the "rope" to rest on the surface at night. In this way it is hoped that the balloon package will visit many different locations pseudo-randomly as the winds carry it. In doing so, it will also yield information on atmospheric circulation patterns. The Mars balloon is designed jointly by Russia, CNES, and The Planetary Society, a public non-profit space-interest group in Pasadena. It will depend upon an orbiting spacecraft to relay its data home. The Mars Global Surveyor spacecraft carries radio relay equipment designed to relay information from landers, surface penetrators, or balloons. Future Mars orbiting spacecraft will also have relay capability, as did two Mars-bound spacecraft that were lost: Mars Observer in 1993 and Mars Climate Orbiter in 1999. # **Sampling** One of the major advantages of having a spacecraft land on the surface of a planet is that it can take direct measurements of the soil. The several Soviet Venera landers accomplished this on the 900° C surface of Venus, and the Viking landers accomplished this on the surface of Mars. Samples are taken from the soil and transported into the spacecraft's instruments where they are analyzed for chemical composition, and the data are relayed back to Earth. The scientific community desires a robotic sample return mission from Mars sometime in the future. Several different scenarios are envisioned for accomplishing this, some of which include a rover to go around and gather up rock and soil samples to deposit inside containers aboard the return vehicle. Interest in returning samples from Mars has heightened recently in the wake of discoveries including recently flowing springs, and ancient lake beds on Mars. Such samples would be examined for fossil evidence of life forms. Sampling of cosmic dust in the vicinity of the Earth has also become an endeavor of great interest, since interplanetary dust particles can reveal some aspects of the history of solar system formation. Space shuttle experiments have so far been successful at capturing three 10 µm particles from Earth orbit, one intact. <u>Stardust</u>'s objective is to return samples of comet dust to Earth. A spacecraft isn't always needed if you want to collect interplanetary material. Dust from interplanetary space rains continuously into Earth's atmosphere, which slows it gently because of the particles' low mass. In 1998 the NASA Dryden Flight Research Center flew one of its ER-2 high-altitude research aircraft with an experiment for the Johnson Space Center that collected high-altitude particulate matter -- or "cosmic dust" -- on two collector instruments mounted on pods under the wings. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS **SECTION I** **ENVIRONMENT** 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics **4** Trajectories **5** Planetary Orbits <u>**6**</u> Electromagnetics **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter **17** Extended Operations 18 Deep Space Network 16.01 True or false? A flyby mission's encounter phase typically lasts longer than an orbiter mission's encounter phase. True False 16.02 True or false? It is common for a spacecraft's orbit-insertion burn to be unobservable from Earth. True False # 16.03 Which of the following are normally performed as part of a planetary system exploration mission? atmosphere observations complete surface mapping sample return ring occultation experiments magnetosphere measurement satellite observations ### 16.04 Aerobraking converts the spacecraft's velocity largely into... heat water carbon dioxide UV electricity # 16.05 True or false? Gathering data for gravity field mapping requires only receiving and processing a coherent downlink. True False ### SKIP ANSWER CHECK | HOME GUIDE IND | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |---|--|--| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise | | 2 Reference Systems3 Gravity & Mechanics | 8 Experiments9 S/C Classification | 15 <u>Cruise</u>
16 Encounter | | 4 Trajectories5 Planetary Orbits | 10 Telecommunications 11 Onboard Systems | 17 Extended Operations18 Deep Space Network | | <u>6</u> Electromagnetics | 12 Science Instruments13 Navigation | | # **Chapter 17. Extended Operations Phase** ### **Objectives:** Upon completion of this chapter, you will be able to cite examples of completion of a mission's primary objectives and obtaining additional science data after their completion. You will consider how depletion of resources contributes to the end of a mission, identify resources that affect mission life, and describe logistics of closeout of a mission. # **Completion of Primary Objectives** A mission's primary objectives are spelled out well in advance of the spacecraft's launch. The efforts of all of the flight team members are concentrated during the life of the mission toward achieving those objectives. A measure of a mission's success is whether it has gathered enough data to complete or exceed its originally stated objectives. During the course of a mission, there may be inadvertent losses of data. In the case of an orbiter mission, it might be possible to recover the losses by repeating observations of areas where the loss was sustained. Such data recovery might require additional time be added to the portion of a mission during which its primary objectives are being achieved. However, major data losses and their GAPS IN MAGELLAN DATA ON VENUS GLOBE Click image for information. recovery are usually planned for during mission design. One predictable data loss occurs during superior conjunction, when the sun interferes with spacecraft communications for a number of days. In the image above, missing Magellan radar data appears as swaths from pole to pole (arrows) which have been filled in with lower-resolution data from the Pioneer 12 mission. Magellan later recovered the missing high-resolution data. ### Additional Science Data Once a spacecraft has completed its primary objectives, it may still be in a healthy and operable state. Since it has already undergone all the efforts involved in conception, design and construction, launch, cruise and perhaps orbit insertion, it can be very economical to redirect an existing spacecraft toward accomplishing new objectives and to retrieve data over and above the initially planned objectives. This has been the case with several JPL spacecraft. It is common for a flight project to have goals in mind for extended missions to take advantage of a still-viable spacecraft in a unique location when the original funding expires. Voyager was originally approved as a mission only to Jupiter and Saturn. But Voyager 2's original trajectory was selected with the hope that the spacecraft might be healthy after a successful Saturn flyby, and that it could take advantage of that good fortune. After Voyager 1 was successful in achieving its objective of reconnaissance of the Saturnian system, including a tricky solar occultation of Titan and associated observations, Voyager 2 was not required to be used solely as a backup spacecraft to duplicate these experiments. Voyager 2's trajectory to Uranus and Neptune was therefore preserved and successfully executed. Approval of additional funding enabled making some necessary modifications, both in the ground data system and in the spacecraft's onboard flight software, to continue on to encounter and observe the Uranus and Neptune systems. By the time Voyager 2 reached Uranus after a five-year cruise from Saturn, it had many new capabilities, such as increased three-axis stability, extended imaging exposure modes, image motion compensation, data compression, and new error-correction coding. In 1993, after 15 years of flight, Voyagers 1 and 2 both observed the first direct evidence of the long-sought-after heliopause. They identified a low
frequency signature of solar flare material interacting with the heliopause at an estimated distance of 40 to 70 AU ahead of Voyager 1's location, which was 52 AU from the sun at the time. After fulfilling its goal of mapping at least 70% of the surface of Venus, the Magellan mission went on to accomplish special stereo imaging tests, and interferometric observation tests. Once mapping had tallied 98% of the surface, and the low-latitude gravity survey was completed, all of its original objectives had been met and exceeded. Rather than abandon the spacecraft in orbit, the Magellan Project applied funding which had been saved up over the course of the primary mission to begin an adventurous transition experiment, pioneering the use of aerobraking to attain a nearly circular Venusian orbit. ### **Orbiting Relay Operations** As mentioned in the last chapter, some Mars orbiting spacecraft are equipped with radio relay capability intended to receive uplink from surface or airborne craft. Typically such relay equipment operates at UHF frequencies. In order to serve as a relay, at least some of the orbiter's own science data gathering activities would have to be reduced or interrupted while its data handling and storage subsystems process the relay data. This may present an undesirable impact to the mission's ability to meet its primary objectives. Relay service, then, is a good candidate for extended mission operations. Since relay service entails neither keeping optical instruments pointed, nor flying a precise ground track, the demand on the attitude control and propulsion systems is minimal, and a little propellant can go a long way. The demand on other subsystems, such as electrical supply, can also be reduced in the absence of other science instruments to operate. The black and white image above shows the nadir-facing deck of the Mars Global Surveyor spacecraft currently orbiting Mars. The MR (<u>Mars relay</u>) antenna is visible on the right. ### **End of Mission** Resources give out. Due to the age of their RTGs in 2000, the Pioneers 10 and 11 spacecraft faced the need to turn off electrical heaters for the propellant lines in order to conserve electrical power for continued operation of science instruments. Doing so allowed the propellant to freeze, making it impossible to re-thaw for use in additional spacecraft maneuvers. The spacecraft were still downlinking science data while Earth eventually drifted away from their view, and over the following months contact was lost most likely forever. Voyagers 1 and 2 are expected to survive until the sunlight they observe is too weak to register on their sun sensors, causing a loss of attitude reference. This is forecast to happen near the year 2015, which may or may not be after they have crossed the heliopause. Electrical energy from their RTGs may fall below a useable level about the same time or shortly thereafter. The spacecraft's supply of hydrazine may become depleted sometime after that, making continued three-axis stabilization impossible. Pioneer 12 ran out of hydrazine propellant in 1993, and was unable to further resist the slow decay of its orbit resulting from friction with the tenuous upper atmosphere of Venus. It entered the atmosphere and burned up like a meteor after fourteen years of service. Components wear out and fail. The Hubble Space Telescope has been fitted with many new components, including new attitude-reference gyroscopes, to replace failed and failing units. Two of Magellan's attitude-reference gyroscopes had failed prior to the start of the transition experiment, but of course no replacement was possible. To date, a JPL mission has not been turned off because of lack of funding. Once a mission has ended, the flight team personnel are disbanded, and the ground hardware is returned to the loan pool or sent into long-term storage. Sometimes it is possible to donate excess computers to schools. Oversubscribed DSN resources are freed of contention from the terminated mission, and the additional tracking time allocations can be made available to missions currently in their prime. While layoffs are not uncommon, many personnel from a disbanded flight team are assigned by their JPL section management to new flight projects to take advantage of valuable experience gained, or to other interim work. Many Viking team members joined the Voyager mission after Viking achieved its success at Mars in the late 1970s. Many of the Voyager flight team members joined the Magellan project after Voyager's last planetary encounter ended in October 1989. Other ex-Voyager people joined the Galileo and Topex/ Poseidon missions. Some ex-Magellan people are working on Cassini, Mars Global Surveyor, and Mars Pathfinder. Mission's end also provides a convenient time for some employees to begin their retirement, and for new employees to be hired and begin building careers in interplanetary exploration. | <u>HOME</u> | <u>GUIDE</u> | <u>INDEX</u> | <u>GLOSSARY</u> | UNITS OF MEASURE | <u>LINKS</u> | |--------------------|--------------|--------------|----------------------------------|-----------------------------|--------------| | SECTION
ENVIRON | _ | ~ | C TION II
GHT PROJECTS | SECTION III
FLIGHT OPERA | ATIONS | 1 The Solar System 2 Reference Systems **3** Gravity & Mechanics **4** Trajectories **5** Planetary Orbits **6** Electromagnetics 7 Mission Inception **8** Experiments 9 S/C Classification **10** Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network 17.01 True or false? Probably the best measure of a mission's success is whether it has returned enough data to fulfill its primary objectives. True False ### 17.02 An orbiting Mars data relay capability... requires more resources than does planetary mapping. exists today. uses UHF radio. can only operate after the orbiter's prime mission is complete. is intended to serve landers and other craft. makes the DSN unnecessary. # 17.03 Which of the following is probably the most highly-contended resource to be freed at the end of a mission? Desktop computers Employees DSN tracking Data communications lines IBM-360 time SKIP ANSWER CHECK | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics SECTION II FLIGHT PRO 7 Mission In 9 S/C Classi 10 Telecom 11 Onboard 12 Science I 13 Navigation | acception14 Launchats15 Cruisefication16 Encountermunications17 Extended OperationSystems18 Deep Space Networkinstruments | |---|---| # **Objectives:** Upon completion of this chapter, you will be able to describe the Deep Space Network's seven data types and trace data flow. You will be able to describe the three Deep Space Communications Complexes, and compare five types of Deep Space Stations. You will be able to describe advantages of arraying and cite planned improvements in the DSN. The NASA Deep Space Network, DSN, is an international network of facilities managed and operated by JPL's Telecommunications and Mission Operations Directorate, TMOD. The DSN supports interplanetary spacecraft missions, radio astronomy, radar astronomy, and related observations for the exploration of the solar system and the universe. The DSN also supports selected Earth-orbiting missions. The DSN is the largest and most sensitive scientific telecommunications system in the world. It consists of three deep-space communications complexes, DSCCs, placed approximately 120 degrees apart around the world: at Goldstone near Barstow in California's Mojave Desert; at Robledo near Madrid, Spain; and at Tidbinbilla near Canberra, Australia. The Network Operations Control Center, NOCC, is in building 230 at JPL. The strategic placement of the DSCCs permits constant observation of spacecraft on interplanetary missions as the Earth rotates. The DSN enjoys a rich history that is closely intertwined with the history of the space age and the development of telecommunications. This page offers a number of images. Each image, when selected, displays an extensive caption describing a part of the DSN's history. | Some related web links to visit: | | | | |----------------------------------|----------|---------|------| | DSN WEBSITE | BROCHURE | HISTORY | TMOD | # The Seven DSN Data Systems The DSN is an extremely complex facility, but it is comprehensible if you can recognize its seven systems, each with its specific data type. Recognizing the distinct systems provides a context for learning about each system's parts and how they relate to the other DSN systems. Here is a brief discussion of the seven DSN systems and data types. # 1. Frequency & Timing System, FTS Any computer system, whether desktop or supercomputer, has an internal clock that directs every step of the computer's operations. The FTS is the DSN's "internal clock." With precision and accuracy that are at the forefront of world class frequency and timing <u>science</u>, FTS is essential to nearly every part of the DSN, enabling the other six systems to operate. At the heart of the FTS are four frequency standards of which one is prime and the other three are backups. These include the hydrogen masers mentioned in Chapter 10 and cesium frequency standards. The FTS master clock assembly produces time codes using the frequency standard as a reference. Every subsystem within the other six systems and nearly every assembly have an input from FTS in the form of a reference frequency and/or time codes. Those subsystems having time
code inputs interface via time code translators, TCTs. FTS synchronization is managed among all three DSCCs and JPL by keeping track of offsets in microseconds resulting from comparison of local FTS data with reference pulses received from Global Positioning System, GPS, satellites. # 2. Tracking System, TRK TRK capabilities include Doppler, ranging, predicts, and DSN antenna control. Measurement of the Doppler shift on a spacecraft's coherent downlink carrier allows determination of the line-of-sight component of the spacecraft's velocity. Ranging symbols uplinked and echoed by a spacecraft enable navigators to determine an average distance to and from the spacecraft. Navigators use Doppler and range measurements to determine a spacecraft's trajectory and to infer gravity fields of bodies that affect the spacecraft. Navigation team members create ephemeris files that the DSN uses to generate antenna pointing predicts and frequency predicts for uplink and downlink. Predicts are sent to DSN sites to enable acquisition and following of the spacecraft. # 3. Telemetry System, TLM A spacecraft produces digital data to represent engineering measurements, such as the temperatures of parts of the spacecraft, and science data such as images from cameras. The spacecraft places symbols on its downlink to represent the ones and zeroes that make up this data, and the DSN telemetry system recreates the spacecraft's digital data by recognizing the downlinked symbols and decoding them. DSN then delivers the TLM data to the flight project for display, distribution, storage, analysis, and eventual publication. <u>Live TLM</u> in real time is available from the Mars Global Surveyor spacecraft when it is being tracked by the DSN. During periods when no DSN tracking is scheduled, recent TLM is available for viewing at the same link. # 4. Command System, CMD Flight projects send digital data to the spacecraft via the DSN command system. Like telemetry-in-reverse, digital bits generated by the flight project are sent as CMD data to the spacecraft, which is able to recognize the bits as either flight software to load into its on-board computers, or as commands to control the spacecraft's activities. # 5. Monitor System, MON MON data reports on the operation and performance of the DSN itself. The DSN monitor system collects data from assemblies throughout the seven DSN systems. This MON data is used in various locations: within the DSCC to watch and control its own activities; at the Network Operations and Control Center at JPL for managing and advising DSN operations, and in flight projects. Flight projects typically select a subset of MON data to distribute and store along with TLM data to provide indications of, for example, the strength of the spacecraft's signal as received by DSN. # 6. Radio Science System, RS As mentioned in <u>Chapter 8</u>, RS experiments use the spacecraft radio and the DSN together as a science instrument. RS investigators remotely control equipment in the DSN to capture and record data on the attenuation, scintillation, refraction, rotation, Doppler shifts, and other direct modifications of a spacecraft's radio signal as it is affected by the atmosphere of a planet, the sun, moons, or by structures such as planetary rings or gravitational fields. Unlike the <u>closed-loop</u> receivers used by TRK and TLM, RS uses open-loop receivers and spectrum processing equipment. Rather than lock onto one discrete frequency, the open-loop equipment can observe a range of frequencies. The JPL Radio Science System Group has an informative website. # 7. Very Long Baseline Interferometry System, VLBI VLBI can be applied to a number of investigations. Two or more widely separated DSN stations observe the same spacecraft or quasar at the same time, using open-loop receivers, and record their data. The recorded data is taken to a special-purpose computer called a <u>correlator</u> for processing to produce a cross-correlation <u>fringe pattern</u>. Further analysis can precisely determine the relative position of the antennas. This investigation is called <u>geodesy</u>. With the antenna positions known precisely, VLBI can precisely determine the position of a spacecraft. VLBI can also produce <u>synthetic aperture</u> results such as images of astronomical objects. Here is a <u>tutorial</u> on VLBI. # The DSN Facilities In addition to the three DSCCs and the NOCC, the DSN also includes the following: - the Demonstration Test Facility at JPL known as DTF-21 where spacecraft-to-DSN compatibility is demonstrated and tested prior to launch, - the Merrit Island facility MIL-71 in Florida, which supports launches, and - the <u>Ground Communications Facility</u>, GCF, which connects them all with voice and data communications. The GCF uses land lines, submarine cable, terrestrial microwave, and communications satellites. #### A Closer Look at the DSCCs All three DSCCs have generally the same makeup, although Goldstone, GDSCC, being closest to JPL, has some additional research and development facilities not found at the others: Madrid, MDSCC, or Canberra, CDSCC. Each DSCC has the following: - A set of Deep Space Stations, DSSs. Each DSS comprises a high-gain, parabolic reflector antenna dish steerable in azimuth and elevation, and its associated front-end equipment such as low-noise amplifiers and transmitters. That's a DSS pictured near the top of this page. - The signal processing center, SPC. The SPC connects with all the DSSs at the DSCC, and houses the operations personnel along with all the computers and other equipment that populate the seven DSN systems. - Administrative offices and a cafeteria. The remainder of this chapter discusses the sets of DSSs and their different capabilities and describes the flow of TLM, MON, TRK, RS, and CMD data. HOME GUIDE INDEX GLOSSARY UNITS OF MEASURE LINKS #### **SECTION I** **ENVIRONMENT** - 1 The Solar System - 2 Reference Systems - 3 Gravity & Mechanics - 4 Trajectories - **5** Planetary Orbits - **6** Electromagnetics #### **SECTION II** **FLIGHT PROJECTS** - 7 Mission Inception - **8** Experiments - 9 S/C Classification - 10 Telecommunications - 11 Onboard Systems - **12** Science Instruments - 13 Navigation #### **SECTION III** **FLIGHT OPERATIONS** - 14 Launch - 15 Cruise - **16** Encounter - **17** Extended Operations - **18** Deep Space Network # **DSS Designations** - All the DSSs at the GDSCC in California are designated with numbers in the teens and twenties: DSS13, DSS14, DSS15, DSS24, DSS25, DSS26, etc. - All the DSSs at the CDSCC in Australia are designated with numbers in the thirties and forties: DSS34, DSS43, DSS45 and DSS46. - All the DSSs at the MDSCC in Spain are designated with numbers in the fifties and sixties: DSS54, DSS65, and DSS63. - DSSs of a particular size and type across the DSN are referred to as a <u>subnet</u>. # The 70-m Subnet: DSS14, DSS43, DSS 63 The three 70-m DSSs were originally built as 64-m diameter antennas. The first, GDSCC's DSS-14, also known as the Mars Station for its support of Mariner-4, <u>began operation</u> in 1966. All three were <u>expanded</u> to 70-m diameter from 1982 to 1988 to increase their sensitivity to support Voyager 2's encounter with Neptune. The <u>70-m</u> DSSs are used for deep-space mission support, radio astronomy, and VLBI. The 70-m DSS14 at GDSCC is also used for radar astronomy, which is known as Goldstone Solar System Radar, GSSR. The 70-m subnet DSSs support both X-band and S-band uplink and downlink. The 34-m HEF Subnet DSS15, DSS45, DSS65 HEF stands for High-Efficiency. This subnet was installed to replace the older 34-m Standard, STD, subnet. The 34-m STD subnet DSSs had a polar-axis, or HA-DEC, design and were originally built with 26-m diameter reflectors and later upgraded to 34-m. The upgrade required repositioning the entire DSS up on concrete footings so that the reflector could point to low elevations without striking the ground. The 34-m STD DSSs at CDSCC (DSS42) without striking the ground. The 34-m STD DSSs at CDSCC (DSS42) and at MDSCC (DSS61) have been dismantled. The GDSCC 34-m STD (DSS12) was converted to an educational resource and renamed the Goldstone-Apple Valley Radio Telescope, GAVRT. The 34-m HEF subnet was designed with the more efficient azimuth-elevation mounting and a 34-m reflector from the start, with a precision-shaped surface for maximum signal-gathering capability. The 34-m HEF subnet supports mostly deep space missions, but may occasionally support a mission in high Earth orbit. The 34-m HEF subnet DSSs support X-band uplink and downlink, and S-band downlink. # The 34-m BWG Subnet DSS24, DSS25, DSS26, DSS34, DSS54: BWG stands for Beam Wave Guide. These, the newest of the DSSs to be designed and implemented, can be recognized by the hole in the middle of their main reflectors where on other DSSs you'd find a feed cone full of microwave equipment. The BWG design does not require sensitive equipment to be mounted in a cramped, moveable feedhorn or room mounted beneath the main reflector, where it is difficult to access for maintenance, repair, and upgrade. Instead, the BWG DSS directs the microwave beam through waveguides via five precision RF mirrors down into a basement room where equipment can be stably mounted on the floor and on balconies, with plenty of room for access. The image shows two of the beam waveguide reflectors inside the antenna mounting. These two reflectors maintain the microwave beam as the antenna moves around in azimuth. Similar reflectors permit freedom of movement in elevation. The 34-m BWG subnet supports mostly deep space missions, but may occasionally support a mission in high Earth orbit. The 34-m BWG subnet DSSs generally support both X-band and S-band uplink and downlink, although this is not true for all of the BWG DSSs at GDSCC. Some at GDSCC have Ka uplink and downlink capability. # The 26-m Subnet DSS16, DSS46, DSS66: The
26-m diameter subnet is used for rapidly tracking Earth-orbiting spacecraft. They were originally built to support the Apollo lunar missions between 1967 and 1972. The 26-m DSSs were originally part of the Spaceflight Tracking and Data Network, STDN, operated by NASA's Goddard Space Flight Center in Greenbelt, Maryland. They were integrated into the DSN in 1985 when it needed them to track spacecraft in highly elliptical Earth orbits. The 26-m subnet DSSs support S-band uplink and downlink. # **Arraying** A powerful technique for obtaining higher sensitivity in support of distant spacecraft is <u>arraying</u>. Arraying means electronically combining the signals coming in from two or more DSSs, either at the same DSCC, at two different DSCCs, or with a non-DSN radio telescope. This increases the effective aperture, strengthens the spacecraft's weak signal, and permits it to downlink data at a higher rate. Arraying was conducted between DSS43 and the Parkes radio telescope in Australia in support of the 1986 Voyager 2 encounter with Uranus. The 27-antenna Very Large Array in Socorro New Mexico was arrayed with DSS14 in support of Voyager's 1989 encounter with Neptune. <u>Intercontinental arraying</u> was accomplished in support of the Galileo mission at Jupiter. Arraying four 34-m DSSs can provide the equivalent of one 70-m DSS. # Advances in the DSN <u>New antennas</u> are being added to the DSN to help support the growing demands for communication and navigation, and to help act as a backup in case of any need for extended periods of maintenance or repair for existing DSSs. All the new antennas are of the 34-m BWG type. The <u>Mars Network</u> is a long-anticipated improvement to interplanetary communications. Rather than have all spacecraft communicate individually with antennas of the DSN, a network is being studied for placement at the planet Mars to help consolidate the communications and navigation tasks at the red planet. HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS # **SECTION I** **ENVIRONMENT** - 1 The Solar System - 2 Reference Systems - **3** Gravity & Mechanics - **4** Trajectories - **5** Planetary Orbits - 6 Electromagnetics ## **SECTION II** FLIGHT PROJECTS - 7 Mission Inception - **8** Experiments - 9 S/C Classification - **10** Telecommunications - 11 Onboard Systems - **12** Science Instruments - 13 Navigation # **SECTION III** FLIGHT OPERATIONS - 14 Launch - 15 Cruise - 16 Encounter - **17** Extended Operations - 18 Deep Space Network On this page we'll follow a typical communications link from a spacecraft into the DSS antenna, through the DSCC subsystems (s/s), and on to JPL. Also, command data can be traced from JPL to the DSCC and out the DSS antenna toward the spacecraft. The first diagram shows equipment located within a DSS. The second diagram shows equipment located within the SPC. # Data Flow at the DSCC • Downlink RF enters the DSS antenna reflector shown in black in the diagram, and proceeds down the green line, which represents waveguides. Along this initial path is where the five reflectors of a BWG would be located, directing the RF into the basement where the rest of the equipment is located. With other DSSs, all the equipment in the first diagram is located in the feedhorn and just below the reflector, where it all moves with the reflector as it tracks the spacecraft. The blue arrow on the left indicates antenna control signals going to the DSS antenna equipment from the DSCC tracking s/s in the SPC. All the other components in this diagram belong to the DSCC microwave s/s. The green line comes to a dichroic plate, also called a dichroic mirror. RF at one frequency, for example S-band, passes through the plate, to the gold colored path below, while RF of another frequency, for example X-band, reflects off to follow waveguides in another path colored blue. Some DSSs can also select Ka-band or other bands of RF. The desired polarization is selected using filters. This might be right-hand circular polarization, RCP, or left-hand, LCP, or none. - The RF of each band, S and X in this example, goes to a low-noise amplifier, LNA. The LNA used depends on what is installed at a particular DSS. It may be a cryogenically cooled vacuum tube called a maser, or it may be a solid-state device called a high-electron-mobility transistor, HEMT. The function of the LNA is to amplify a band of RF while introducing an absolute minimum amount of noise. DSN's masers are cooled with liquid helium to keep RF noise down. An amplified band of RF leaves the LNA and is directed to the receivers, which are shown in the next diagram. - Before getting to the next diagram, notice the red line labelled "From Exciter" coming up to the klystron on the right. This represents the uplink signal to be amplified by the klystron, which is a microwave power amplifier vacuum tube. The signal is generated by the exciter (part of the receiver) based on a reference frequency provided by FTS, and other inputs to be discussed later. Polarization of the klystron's output is selected by a filter to match the spacecraft's receiver. The klystron's output illuminates the DSS's antenna reflector so it can be seen by the spacecraft. Most klystrons have to be actively cooled by refrigerated water or other means. The klystron, its high-voltage-DC, high-current power supply, and its cooling apparatus are collectively known as the transmitter, TXR. - Looking at the lower diagram, which represents equipment in the SPC, the signal from the LNA enters at the top. If two or more LNAs are operating, the path would be multiple. Depending on operations, the LNA may feed either a closed-loop receiver, an open-loop receiver, or both. The switches in the diagram show there's an operational choice. An open-loop receiver is used for radio science, and also for VLBI. The open-loop receivers select a band of frequencies to amplify for further processing by RS or VLBI equipment. VLBI equipment typically outputs data to tapes that are delivered to a correlator at a different location. Radio science equipment, controlled remotely from JPL, will typically output its high-volume data online for transmission to JPL via the GCF, indicated by the block at the bottom of the diagram. RF from the LNA can also go to the closed-loop receiver. DSN uses its highly advanced receiver known as the Block-V receiver (V is the Roman numeral five), BVR. In the BVR a single frequency, the spacecraft's downlink carrier, is selected and amplified. If there are any subcarriers, they are detected here. If any symbols are present on the carrier or on any subcarriers, they are recovered within the BVR. The carrier is down-converted (shifted to a lower, more manageable frequency) and passed to the DSCC tracking s/s. Any TLM symbols from the downlink are passed to the DSCC telemetry s/s. - At the discretion of the Ace, a feature known as <u>conscan</u> may be invoked. Conscan, which stands for conical scanning, observes the closed-loop receiver's signal strength and adjusts the antenna pointing via the tracking s/s. The antenna constantly moves in small, tightening circles as it optimizes its pointing. Conscan must be disabled when the spacecraft's signal changes or disappears. It is not desirable to conscan during VLBI or RS operations due to the variations it induces in signal level. RS does, however, have a feature called <u>monopulse</u> to optimize Ka-band reception. Monopulse creates records of the adjustments it induces that can be accounted for in data analysis. - In the DSCC tracking s/s the downlink's Doppler shift is measured and compared with the predicted Doppler shift. The difference is called the Doppler residuals. If there are ranging symbols on the downlink, they are processed within this subsystem as well. The ranging and Doppler data is passed to the navigators at JPL via the GCF. - If there are telemetry symbols present on the downlink, they are processed within the DSCC telemetry s/s. First they are Viterbi-decoded to recover data bits from the convolutionally coded symbol stream. The assembly that does this is the maximum-likelihood convolutional decoder, MCD. If any other coding, such as Reed-Solomon is present, it can be decoded here or at JPL. The bits are then grouped into the same packages, called transfer frames, that the spacecraft had grouped them into (most newer spacecraft comply with the CCSDS standards for grouping bits into packets and transfer frames). The TLM data is then sent to JPL via the GCF. - Command data intended to be sent to the spacecraft comes from JPL via the GCF as indicated on the right side of the diagram. The DSCC command s/s processes the data and sends the bits, on a subcarrier if applicable, to the exciter. Also, and not shown in the diagram, is a response from the command s/s to JPL. The response, also designated CMD data, includes information identifying the CMD bits that have left the antenna, and reports of all the command s/s operations. - If operations call for placing ranging symbols and/or a ranging subcarrier on the uplink, the DSCC tracking s/s sends it to the exciter. - The exciter creates the uplink signal with any appropriate command subcarrier, ranging subcarrier, and/or data modulation. It sends this signal to the transmitter which will amplify it enough for the spacecraft to receive it. - The GCF, indicated by the lower block, uses a reliable network service, RNS, to deliver data to a central data recorder, CDR, at JPL. RNS automatically replays any data that may have gotten dropped during its trip to JPL. The result is 100% error-free data transmission, given enough time to identify and process the replays. Some DSN systems are not represented in the simplified diagrams above. The FTS has inputs to all the subsystems shown. MON data is also collected from all the subsystems and sent to JPL via the GCF. # **Colorful Equipment** In operations, subsystems and assemblies are
called "green" when they have been operating nominally for a period of time including at least one previous tracking pass. Anything inoperable is designated "red" equipment. And anything that has been repaired and is returning to use during the present tracking pass is designated "orange." # **Data At JPL** Once the data streams, TLM, MON, TRK, RS, CMD, are received at JPL, they are processed by the Deep Space Mission System, DSMS. The DSMS uses advanced software and high-performance workstations to process and route the data, broadcast data in real time, distribute data, to display data, to store data in online repositories for later query by users, and to archive data on permanent media. | HOME GUIDE IND | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |---------------------------|------------------------|-------------------------------| | SECTION I | SECTION II | SECTION III | | ENVIRONMENT | FLIGHT PROJECTS | FLIGHT OPERATIONS | | 1 The Solar System | 7 Mission Inception | 14 Launch | | 2 Reference Systems | <u>8 Experiments</u> | 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | 4 Trajectories | 10 Telecommunications | 17 Extended Operations | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | <u>6</u> Electromagnetics | 12 Science Instruments | | | | 13 Navigation | | # 18.01 Where is DSS14? What subnet does it belong to? **GDSCC** **MDSCC** **CDSCC** 70-m 26-m **BWG** **HEF** STD # 18.02 Where is DSS25? What subnet does it belong to? **GDSCC** **MDSCC** **CDSCC** 70-m 26-m **BWG** HEF STD # 18.03 Where is DSS34? What subnet does it belong to? GDSCC MDSCC CDSCC 70-m 26-m **BWG** **HEF** STD # 18.04 Where is DSS65? What subnet does it belong to? **GDSCC** **MDSCC** **CDSCC** 70-m 26-m **BWG** HEF STD # 18.05 Which of the following DSN systems reports on the internal performance of most DSN components? **FTS** TRK TLM **CMD** **MON** RS **VLBI** # 18.06 Which of the following DSN systems is capable of measuring continental drift? **FTS** **TRK** TLM **CMD** **MON** **VLBI** # 18.07 Where are components of the DSCC microwave subsystem located? **NOCC** SPC DSS **GCF** # 18.08 What would be the consequence(s) of a red BVR? None No RS data No TLM data No MON data No TRK data No VLBI SKIP ANSWER CHECK | HOME GUIDE IND | DEX GLOSSARY UNIT | S OF MEASURE LINKS | |---|---|--| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter | | 4 Trajectories | 10 Telecommunications | 17 Extended Operations | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | <u>6</u> Electromagnetics | Science InstrumentsNavigation | | # Congratulations! # You have completed the JPL Basics of Space Flight. Thanks for your participation. If you would like to download the Certificate of Completion to fill out for your personal files, continue to the next page (no academic credit is offered). The certificate may be viewed and printed with the Adobe Acrobat Reader, available free of charge: **HOME** **GUIDE** **INDEX** #### PRECEDING PAGE DOWNLOAD THE CERTIFICATE **UNITS OF MEASURE** **GLOSSARY** | SECTION I | SECTION II | SECTION III | |---------------------------|------------------------|-------------------------------| | ENVIRONMENT | FLIGHT PROJECTS | FLIGHT OPERATIONS | | 1 The Solar System | 7 Mission Inception | 14 Launch | | 2 Reference Systems | <u>8 Experiments</u> | 15 Cruise | | 3 Gravity & Mechanics | 9 S/C Classification | 16 Encounter | | 4 Trajectories | 10 Telecommunications | 17 Extended Operations | | 5 Planetary Orbits | 11 Onboard Systems | 18 Deep Space Network | | <u>6</u> Electromagnetics | 12 Science Instruments | | **13** Navigation # Certificate of Completion | This is to certify that I, | have completed the | | | | |---|--------------------|--|--|--| | PRINT NAME | | | | | | Basics of Space Flight training module, 890-289 / JPL D-20120, | | | | | | and I have accomplished its stated learning objectives to my own satisfaction. This achievement represents approximately hours of study. | | | | | | SIGNATURE | DATE | | | | Upon completion of the training module, complete this certificate and send a copy to your supervisor for inclusion in your personnel file. Use your browser's "FIND" capability to locate a word right away on this page. You should also have a good English dictionary at hand, to use with words and abbreviations that are not listed here or in the <u>Units of Measure</u> section. Some additional glossaries that may be useful are linked here. # $\underline{\mathbf{A}} \ \underline{\mathbf{B}} \ \underline{\mathbf{C}} \ \underline{\mathbf{D}} \ \underline{\mathbf{E}} \ \underline{\mathbf{F}} \ \underline{\mathbf{G}} \ \underline{\mathbf{H}} \ \underline{\mathbf{I}} \ \underline{\mathbf{J}} \ \underline{\mathbf{K}} \ \underline{\mathbf{L}} \ \underline{\mathbf{M}} \ \underline{\mathbf{N}} \ \underline{\mathbf{O}} \ \underline{\mathbf{P}} \ \underline{\mathbf{Q}} \ \underline{\mathbf{R}} \ \underline{\mathbf{S}} \ \underline{\mathbf{T}} \ \underline{\mathbf{U}} \ \underline{\mathbf{V}} \ \underline{\mathbf{W}} \ \underline{\mathbf{X}} \ \underline{\mathbf{Y}} \ \underline{\mathbf{Z}}$ A Acceleration. Å Angstrom (0.0001 micrometer, 0.1 nm). **AAAS** American Association for the Advancement of Science. **AACS** Attitude and Articulation Control Subsystem onboard a spacecraft. **AAS** American Astronomical Society. \mathbf{AC} Alternating current. **ALT** Altitude. **ALT** Altimetry data. \mathbf{AM} Ante meridiem (Latin: before midday), morning. am Attometer (10^{-18} m) . ## **AMMOS** Advanced Multimission Operations System. #### **Amor** A class of Earth-crossing asteroid. ## **AO** Announcement of Opportunity. ## **AOS** Acquisition Of Signal, used in DSN operations. # **Aphelion** Apoapsis in solar orbit. # **Apoapsis** The farthest point in an orbit from the body being orbited. # Apogee Apoapsis in Earth orbit. # **Apojove** Apoapsis in Jupiter orbit. # **Apollo** A class of Earth-crossing asteroid. # **Apolune** Apoapsis in lunar orbit. # **Apselene** Apoapsis in lunar orbit. # Argument Angular distance. # **Argument of periapsis** The argument (angular distance) of periapsis from the ascending node. # **Ascending node** The point at which an orbit crosses the ecliptic plane going north. # **Asteroids** Small bodies composed of rock and metal in orbit about the sun. # Aten A class of Earth-crossing <u>asteroid</u>. #### Attometer 10⁻¹⁸ meter. ## AU Astronomical Unit, mean Earth-to-sun distance, approximately 150,000,000 km. ## AZ Azimuth. #### QUICK-INDEX AT TOP OF PAGE ## **Barycenter** The common center of mass about which two or more bodies revolve. #### **Beacon** Downlink from a spacecraft that immediately indicates the state of the spacecraft as being one of several possible states by virtue of the presence and/or frequency of the subcarrier. See Chapter 10. #### **Billion** In the U.S., 10^9 . In other countries using SI, 10^{12} . # **Bi-phase** A modulation scheme in which data symbols are represented by a shift from one phase to another. See Chapter 10. #### **BOT** Beginning Of Track, used in DSN operations. #### **BPS** Bits Per Second, same as Baud rate. ## **BSF** Basics of Space Flight (this document). #### **BVR** DSN Block Five (V) Receiver. ## **BWG** Beam waveguide 34-m DSS, the DSN's newest DSS design. #### QUICK-INDEX AT TOP OF PAGE \mathbf{c} The speed of light, 299,792 km per second. #### C-band A range of microwave radio frequencies in the neighborhood of 4 to 8 GHz. #### Caltech The California Institute of Technology. #### Carrier The main frequency of a radio signal generated by a transmitter prior to application of any modulation. # Cassegrain Reflecting scheme in antennas and telescopes having a primary and a secondary reflecting surface to "fold" the EMF back to a focus near the primary reflector. #### **CCD** Charge Coupled Device, a solid-state imaging detector. #### C&DH Command and Data Handling subsystem on board a spacecraft, similar to CDS. #### CCS Computer Command subsystem on board a spacecraft, similar to CDS. ## **CCSDS** Consultative Committee for Space Data Systems, developer of standards for spacecraft uplink and downlink, including packets. ## **CDR** GCF central data recorder. #### CDS Command and Data Subsystem onboard a spacecraft. ## **CDSCC** DSN's Canberra Deep Space Communications Complex in Australia. #### **CDU** Command Detector Unit onboard a spacecraft. # **Centrifugal force** The outward-tending apparent force of a body revolving around another body. #### Centimeter 10^{-2} meter. # **Centripetal acceleration** The inward acceleration of a body revolving around another body. # **CGPM** General Conference of Weights and Measures, Sevres France. The abbreviation is from the French. CGPM is the source for the multiplier names (kilo-, mega-, giga-, etc.) listed in this document. #### Channel In telemetry, one particular measurement to which changing values may be assigned. See Chapter 10. ## **CIT** California Institute of Technology, Caltech. ## **CMC** Complex Monitor and Control, a subsystem at DSCCs. # **CMD** DSN Command System. Also, Command data. #### **CNES** Centre National d'Études Spatiales, France. #### Coherent Two-way communications mode wherein the spacecraft generates its downlink frequency based upon the frequency of the uplink it receives. #### Coma The cloud of diffuse
material surrounding the nucleus of a comet. #### **Comets** Small bodies composed of ice and rock in various orbits about the sun. ## **CRAF** Comet Rendezvous / Asteroid Flyby mission, cancelled. ## **CRS** Cosmic Ray Subsystem, high-energy particle instrument on Voyager. ## **CRT** Cathode ray tube video display device. ## QUICK-INDEX AT TOP OF PAGE ## DC Direct current. #### DEC Declination. #### **Declination** The measure of a celestial body's apparent height above or below the celestial equator. # **Descending node** The point at which an orbit crosses the ecliptic plane going south. ## **DKF** DSN keyword file, also known as KWF. # **Doppler effect** The effect on frequency imposed by relative motion between transmitter and receiver. See Chapter 6. ## **Downlink** Signal received from a spacecraft. ## **DSOT** Data System Operations Team, part of the DSMS staff. #### **DSCC** Deep Space Communications Complex, one of three DSN tracking sites at Goldstone, California; Madrid, Spain; and Canberra, Australia; spaced about equally around the Earth for continuous tracking of deep-space vehicles. ## **DSMS** Deep Space Mission System, the system of computers, software, networks, and procedures that processes data from the DSN at JPL. #### **DSN** Deep Space Network, NASA's worldwide spacecraft tracking facility managed and operated by JPL. ## **DSS** Deep Space Station, the antenna and front-end equipment at DSCCs. # **Dyne** A unit of force equal to the force required to accelerate a 1-g mass 1 cm per second per second. Compare with Newton. #### QUICK-INDEX AT TOP OF PAGE \mathbf{E} East. \mathbf{E} Exa, a multiplier, $x10^{18}$ from the Greek "hex" (six, the "h" is dropped). The reference to six is because this is the sixth multiplier in the series k, M, G, T, P, E. See the entry for CGPM. #### Earth Third planet from the sun, a terrestrial planet. # **Eccentricity** The distance between the foci of an ellipse divided by the major axis. # **Ecliptic** The plane in which Earth orbits the sun and in which solar and lunar eclipses occur. #### **EDR** Experiment Data Record. #### **EHz** ExaHertz (10¹⁸ Hz) ## \mathbf{EL} Elevation. # **Ellipse** A closed plane curve generated in such a way that the sums of its distances from the two fixed points (the foci) is constant. ## **ELV** Expendable launch vehicle. # \mathbf{EM} Electromagnetic. #### **EMF** Electromagnetic force (radiation). #### **EMR** Electromagnetic radiation. #### **EOT** End Of Track, used in DSN operations. # **Equator** An imaginary circle around a body which is everywhere equidistant from the poles, defining the boundary between the northern and southern hemispheres. # **Equinox** The equinoxes are defined as the time when day and night are of equal length. The vernal equinox marks the beginning of spring in the northern hemisphere, and the autumnal equinox marks the beginning of autumn in the northern hemisphere. ## **ERC** NASA's Educator Resource Centers. #### **ERT** Earth-received time, UTC of an event at DSN receive-time, equal to SCET plus OWLT. #### **ESA** European Space Agency. #### ET Ephemeris time, a measurement of time defined by orbital motions. Equates to Mean Solar Time corrected for irregularities in Earth's motions. Obsolete, replaced by TT, Terrestrial Time. eV Electron volt, a measure of the energy of subatomic particles. # Extrasolar planet A planet orbiting a star other than the sun. # QUICK-INDEX AT TOP OF PAGE \mathbf{F} Force. ## **FDS** Flight Data Subsystem. #### \mathbf{FE} Far Encounter phase of mission operations. ## **Femtometer** 10⁻¹⁵ meter. ## **Fluorescence** The phenomenon of emitting light upon absorbing radiation of an invisible wavelength. fm Femtometer (10⁻¹⁵ m) **FM** Frequency modulation. **FTS** DSN Frequency and Timing System. Also, frequency and timing data. FY Fiscal year. ## QUICK-INDEX AT TOP OF PAGE \mathbf{G} Giga, a multiplier, x10⁹, from the Latin "gigas" (giant). See the entry for CGPM. g Gram, a thousandth of the metric standard unit of mass (see kg). The gram was originally based upon the weight of a cubic centimeter of water, which still approximates the current value. Gal Unit of gravity field measurement corresponding to a gravitational acceleration of 1 cm/sec². # **Galaxy** One of billions of systems, each composed of numerous stars, nebulae, and dust. #### Galilean satellites The four large satellites of Jupiter so named because Galileo discovered them when he turned his telescope toward Jupiter: Io, Europa, Ganymede, and Callisto. # Gamma rays Electromagnetic radiation in the neighborhood of 100 femtometers wavelength. **GCF** Ground Communications Facilities, provides data and voice communications between JPL and the three DSCCs. #### **GDS** Ground Data System, encompasses DSN, GCF, DSMS, and project data processing systems. ## **GDSCC** DSN's Goldstone Deep Space Communications Complex in California. ## **GEO** Geosynchronous Earth Orbit. # Geostationary A geosynchronous orbit in which the spacecraft is constrained to a constant latitude. # Geosynchronous A direct, circular, low inclination orbit about the Earth having a period of 23 hours 56 minutes 4 seconds. ## **GHz** Gigahertz (10⁹ Hz). #### **GLL** The Galileo spacecraft. #### **GMT** Greenwich Mean Time. Obsolete. UT, Universal Time is preferred. #### Gravitation The mutual attraction of all masses in the universe. #### **Gravitational waves** Einsteinian distortions of the space-time medium predicted by general relativity theory (not yet directly detected as of January 2001). # **Gravity assist** Technique whereby a spacecraft takes angular momentum from a planet's solar orbit (or a satellite's orbit) to accelerate the spacecraft, or the reverse. See Chapter 4. # **Gravity waves** Certain dynamical features in a planet's atmosphere (not to be confused with gravitational waves). # **Great circle** An imaginary circle on the surface of a sphere whose center is at the center of the sphere. #### **GSSR** Goldstone Solar System Radar, a technique which uses very high-power X and S-band transmitters at DSS 14 to illuminate solar system objects for imaging. ## **GTL** Geotail spacecraft. #### **GTO** Geostationary (or geosynchronous) Transfer Orbit. #### QUICK-INDEX AT TOP OF PAGE #### HA Hour Angle. #### HEF DSN's high-efficiency 34-m DSS, replaces STD DSSs. ## Heliocentric Sun-centered. # Heliopause The boundary theorized to be roughly circular or teardrop-shaped, marking the edge of the sun's influence, perhaps 100 AU from the sun. # Heliosphere The space within the boundary of the heliopause, containing the sun and solar system. #### **HEMT** High-electron-mobility transistor, a low-noise amplifier used in DSN. ## **HGA** High-Gain Antenna onboard a spacecraft. ## **Hohmann Transfer Orbit** Interplanetary trajectory using the least amount of propulsive energy. See Chapter 4. ## **Horizon** The line marking the apparent junction of Earth and sky. h Hour, 60 minutes of time. # **Hour Angle** The angular distance of a celestial object measured westward along the celestial equator from the zenith crossing. In effect, HA represents the RA for a particular location and time of day. #### Hz Hertz, cycles per second. #### QUICK-INDEX AT TOP OF PAGE ## **ICE** International Cometary Explorer spacecraft. #### **Inclination** The angular distance of the orbital plane from the plane of the planet's equator, stated in degrees. # Inferior planet Planet which orbits closer to the Sun than the Earth's orbit. # **Inferior conjunction** Alignment of Earth, sun, and an inferior planet on the same side of the sun. ## Ion A charged particle consisting of an atom stripped of one or more of its electrons. ## **IPAC** Infrared Processing and Analysis Center at Caltech campus on Wilson Avenue in Pasadena. # **IPC** Information Processing Center, JPL's computing center on Woodbury Avenue in Pasadena. ## IR Infrared, meaning "below red" radiation. Electromagnetic radiation in the neighborhood of 100 micrometers wavelength. ## **IRAS** Infrared Astronomical Satellite. ## **ISM** Interstellas medium. ## **ISO** International Standards Organization. ## **ISOE** Integrated Sequence of Events. # **Isotropic** Having uniform properties in all directions. ## **IUS** Inertial Upper Stage. ## QUICK-INDEX AT TOP OF PAGE # **JGR** Journal Of Geophysical Research. #### **Jovian** Jupiter-like planets, the gas giants Jupiter, Saturn, Uranus, and Neptune. ## **JPL** Jet Propulsion Laboratory, operating division of the California Institute of Technology. # **Jupiter** Fifth planet from the sun, a gas giant or Jovian planet. #### QUICK-INDEX AT TOP OF PAGE #### k Kilo, a multiplier, $x10^3$ from the Greek "khilioi" (thousand). See the entry for CGPM. #### K-band A range of microwave radio frequencies in the neighborhood of 12 to 40 GHz. ## kg Kilogram, the metric standard unit of mass, based on the mass of a metal cylinder kept in France. See g (gram). #### kHz kilohertz. ## **Kilometer** 10^3 meter. # **Klystron** A microwave travelling wave tube power amplifier used in transmitters. #### km Kilometers. ## **KSC** Kennedy Space Center, Cape Canaveral, Florida. #### **KWF** Keyword file of events listing DSN station activity. Also known as DKF, DSN keyword file. # Kuiper belt A disk-shaped region about 30 to 100 AU from the sun considered to be the source of the short-period comets. ## QUICK-INDEX AT TOP OF PAGE # Lagrange points Five points with respect to an orbit which a body can stably occupy. Designated L1 through L5. See Chapter 5. ## LAN Local area network for inter-computer communications. # Large Magellanic Cloud LMC, the larger of two small galaxies orbiting nearby our Milky Way galaxy, which are visible from the southern hemisphere. #### Laser Light Amplification by Stimulated Emission of Radiation. Compare with Maser. ## Latitude Circles in parallel planes to that of the equator defining north-south measurements, also called parallels.
L-band A range of microwave radio frequencies in the neighborhood of 1 to 2 GHz. #### **LCP** Left-hand circular polarization. # Leap Year Every fourth year, in which a 366th day is added since the Earth's revolution takes 365 days 5 hr 49 min. ## **LECP** Low-Energy Charged-Particular Detector onboard a spacecraft. ## **LEO** Low Equatorial Orbit. ## **LGA** Low-Gain Antenna onboard a spacecraft. # Light Electromagnetic radiation in the neighborhood of 1 nanometer wavelength. # Light speed 299,792 km per second, the constant c. # Light time The amount of time it takes light or radio signals to travel a certain distance at light speed. # Light year The distance light travels in a year. ## **LMC** Large Magellanic Cloud, the larger of two small galaxies orbiting nearby our Milky Way galaxy, which are visible from the southern hemisphere. #### **LMC** Link Monitor and Control subsystem at the SPCs within the DSN DSCCs. ## **LNA** Low-noise amplifier in DSN, either a maser or a HEMT. #### Local time Time adjusted for location around the Earth or other planets in time zones. # Longitude Great circles that pass through both the north and south poles, also called meridians. ## LOS Loss Of Signal, used in DSN operations. #### LOX Liquid oxygen. #### QUICK-INDEX AT TOP OF PAGE \mathbf{M} Mass. \mathbf{M} Mega, a multiplier, $x10^6$ (million) from the Greek "megas" (great). See the entry for CGPM. #### M100 Messier Catalog entry number 100 is a spiral galaxy in the Virgo cluster seen face-on from our solar system. m Meter (U.S. spelling; elsewhere metre), the international standard of linear measurement. ## Major axis The maximum diameter of an ellipse. ## Mars Fourth planet from the sun, a terrestrial planet. #### Maser A microwave travelling wave tube amplifier named for its process of Microwave Amplification by Stimulated Emission of Radiation. Compare with Laser. In the Deep Space Network, masers are used as low-noise amplifiers of downlink signals, and also as frequency standards. #### MC-cubed Mission Control and Computing Center at JPL (outdated). #### **MCCC** Mission Control and Computing Center at JPL (outdated). # **MCD** DSN's maximum-likelyhood convolutional decoder, the Viterbi decoder. # **MCT** Mission Control Team, JPL Section 368 mission execution real-time operations. ## **MDSCC** DSN's Madrid Deep Space Communications Complex in Spain. #### Mean solar time Time based on an average of the variations caused by Earth's non-circular orbit. The 24-hour day is based on mean solar time. # Mercury First planet from the sun, a terrestrial planet. #### **Meridians** Great circles that pass through both the north and south poles, also called lines of longitude. # **MESUR** The Mars Environmental Survey project at JPL, the engineering prototype of which was originally called MESUR Pathfinder, later Mars Pathfinder. #### Meteor A meteoroid which is in the process of entering Earth's atmosphere. It is called a meteorite after landing. ## Meteorite Rocky or metallic material which has fallen to Earth or to another planet. ## Meteoroid Small bodies in orbit about the sun which are candidates for falling to Earth or to another planet. ## **MGA** Medium-Gain Antenna onboard a spacecraft. ## **MGN** The Magellan spacecraft. #### **MHz** Megahertz (10⁶ Hz). ## **Micrometer** μm, 10⁻⁶ meter. ## Micron Obsolete terms for micrometer, µm (10⁻⁶ m). # Milky Way The galaxy which includes the sun and Earth. #### Millimeter 10^{-3} meter. #### **MIT** Massachusetts Institute of Technology. # **MLI** Multi-layer insulation (spacecraft blanketing). See Chapter 11. #### mm millimeter (10⁻³ m). #### MO The Mars Observer spacecraft. ## Modulation The process of modifying a radio frequency by shifting its phase, frequency, or amplitude to carry information. ## **MON** DSN Monitor System. Also, monitor data. ## Moon A small natural body which orbits a larger one. A natural satellite. Capitalized, the Earth's natural satellite. #### **MOSO** Multimission Operations Systems Office at JPL. ## MR Mars relay. #### μm Micrometer (10⁻⁶ m). # Multiplexing A scheme for delivering many different measurements in one data stream. See Chapter 10. #### QUICK-INDEX AT TOP OF PAGE N Newton, a unit of force equal to the force required to accelerate a 1-kg mass 1 m per second per second (1m/sec²). Compare with dyne. N North. #### **Nadir** The direction from a spacecraft directly down toward the center of a planet. Opposite the zenith. # **NASA** National Aeronautics and Space Administration. #### NE Near Encounter phase in flyby mission operations. # Neptune Eighth planet from the sun, a gas giant or Jovian planet. ## **NiCad** Nickel-cadmium rechargable battery. ## **NIMS** Near-Infrared Mapping Spectrometer onboard the Galileo spacecraft. ## **NIST** National Institute of Standards. #### nm Nanometer (10^{-9} m) . #### nm Nautical Mile, equal to the distance spanned by one minute of arc in latitude, 1.852 km. #### **NMC** Network Monitor and Control subsystem in DSN. # **NOCC** DSN Network Operations Control Center at JPL. #### **Nodes** Points where an orbit crosses a plane. #### Non-coherent Communications mode wherein a spacecraft generates its downlink frequency independent of any uplink frequency. ## **Nucleus** The central body of a comet. ## **Nutation** A small nodding motion in a rotating body. Earth's nutation has a period of 18.6 years and an amplitude of 9.2 arc seconds. ## NRZ Non-return to zero. Modulation scheme in which a phase deviation is held for a period of time in order to represent a data symbol. See Chapter 10. # QUICK-INDEX AT TOP OF PAGE # OB Observatory phase in flyby mission operations encounter period. # **One-way** Communications mode consisting only of downlink received from a spacecraft. #### Oort cloud A large number of comets theorized to orbit the sun in the neighborhood of 50,000 AU. # **OPCT** Operations Planning and Control Team at JPL, "OPSCON." Obsolete, replaced by DSOT, Data Systems Operations Team. # **OPNAV** Optical Navigation (images). # **OSI** ISO's Open Systems Interconnection protocol suite. ## **OSR** Optical Solar Reflector, thermal control component onboard a spacecraft. # **OSSA** Office Of Space Science and Applications, NASA. # **OTM** Orbit Trim Maneuver, spacecraft propulsive maneuver. # **OWLT** One-Way Light Time, elapsed time between Earth and spacecraft or solar system body. # QUICK-INDEX AT TOP OF PAGE P Peta, a multiplier, $x10^{15}$, from the Greek "pente" (five, the "n" is dropped). The reference to five is because this is the fifth multiplier in the series k, M, G, T, P. See the entry for CGPM. ## **Packet** A quantity of data used as the basis for multiplexing, for example in accordance with CCSDS. #### **PAM** Payload Assist Module upper stage. # **Parallels** Circles in parallel planes to that of the equator defining north-south measurements, also called lines of latitude. # **Pathfinder** The Mars Environmental Survey (MESUR) engineering prototype later named Mars Pathfinder. #### **PDS** Planetary Data System. ## **PDT** Pacific Daylight Time. ## PE Post Encounter phase in flyby mission operations. # **Periapsis** The point in an orbit closest to the body being orbited. # Perigee Periapsis in Earth orbit. ## Perihelion Periapsis in solar orbit. # Perijove Periapsis in Jupiter orbit. ## **Perilune** Periapsis in lunar orbit. ## Periselene Periapsis in lunar orbit. # **Phase** The angular distance between peaks or troughs of two waveforms of similar frequency. # Phase The particular appearance of a body's state of illumination, such as the full or crescent phases of the Moon. # **Phase** Any one of several predefined periods in a mission or other activity. ## **Photovoltaic** Materials that convert light into electric current. # **PHz** Petahertz (10¹⁵ Hz). ## PΙ Principal Investigator, scientist in charge of an experiment. # **Picometer** 10⁻¹² meter. ## **PIO** JPL's Public Information Office. ## Plasma Electrically conductive fourth state of matter (other than solid, liquid, or gas), consisting of ions and electrons. # **PLL** Phase-lock-loop circuitry in telecommunications technology. # **Pluto** Ninth planet from the sun, sometimes classified as a small terrestrial planet. # pm Picometer (10-12 m). # **PM** Post meridiem (Latin: after midday), afternoon. ## **PN10** Pioneer 10 spacecraft. ## **PN11** Pioneer 11 spacecraft. # **Prograde** Orbit in which the spacecraft moves in the same direction as the planet rotates. See retrograde. # **PST** Pacific Standard Time. # **PSU** Pyrotechnic Switching Unit onboard a spacecraft. ## QUICK-INDEX AT TOP OF PAGE # Quasar Quasi-stellar object observed mainly in radio waves. Quasars are extragalactic objects believed to be the very distant centers of active galaxies. # RA Right Ascension. ## Radian Unit of angular measurement equal to the angle at the center of a circle subtended by an arc equal in length to the radius. Equals about 57.296 degrees. # **RAM** Random Access Memory. # **RCP** Right-hand circular polarization. ## Red dwarf A small star, on the order of 100 times the mass of Jupiter. # Reflection The deflection or bouncing of electromagnetic waves when they encounter a surface. ## Refraction The deflection or bending of electromagnetic waves when they pass from one kind of transparent medium into another. # Retrograde Orbit in which the spacecraft moves in the opposite direction from the planet's rotatation. See prograde. ## **RF** Radio Frequency. ## **RFI** Radio Frequency Interference. # **Right Ascension** The angular distance of a celestial object measured in hours, minutes, and seconds along the celestial equator eastward from the vernal equinox. # **RNS** GCF reliable network service. # **ROM** Read Only Memory. ## **RPIF** Regional Planetary Imaging Data Facilities. # RS DSN Radio Science System. Also, radio science data. # **RTG** Radioisotope Thermo-Electric Generator onboard a spacecraft.
RTLT Round-Trip Light Time, elapsed time roughly equal to 2 x OWLT. # QUICK-INDEX AT TOP OF PAGE S South. SA Solar Array, photovoltaic panels onboard a spacecraft. **SAF** Spacecraft Assembly Facility, JPL Building 179. **SAR** Synthetic Aperture Radar # **Satellite** A small body which orbits a larger one. A natural or an artificial moon. Earth-orbiting spacecraft are called satellites. While deep-space vehicles are technically satellites of the sun or of another planet, or of the galactic center, they are generally called spacecraft instead of satellites. ## Saturn Sixth planet from the sun, a gas giant or Jovian planet. # S-band A range of microwave radio frequencies in the neighborhood of 2 to 4 GHz. SC Steering Committee. # **SCET** Spacecraft Event Time, equal to ERT minus OWLT. # **SCLK** Spacecraft Clock Time, a counter onboard a spacecraft. #### Sec Second. # **SEDR** Supplementary Experiment Data Record. # **SEF** Spacecraft event file. # **SEGS** Sequence of Events Generation Subsystem. # **Semi-major axis** Half the distance of an ellipse's maximum diameter, the distance from the center of the ellipse to one end. ## **SFOF** Space Flight Operations Facility, Buildings 230 and 264 at JPL. # **SFOS** Space Flight Operations Schedule, product of SEGS. # **Shepherd moons** Moons which gravitationally confine ring particles. # SI The International System of Units (metric system). # Sidereal time Time relative to the stars other than the sun. ## **SIRTF** Space Infrared Telescope Facility. # **SMC** Small Magellanic Cloud, the smaller of two small galaxies orbiting nearby our Milky Way galaxy, which are visible from the southern hemisphere. # **SOE** Sequence of Events. # Solar wind Flow of lightweight ions and electrons (which together comprise plasma) thrown from the sun. # **SNR** Signal-to-Noise Ratio. ## **SPC** Signal Processing Center at each DSCC. # **Spectrum** A range of frequencies or wavelengths. ## **SSA** Solid State Amplifier in a spacecraft telecommunications subsystem, the final stage of amplification for downlink. # **SSI** Solid State Imaging Subsystem, the CCD-based cameras on Galileo. # **SSI** Space Services, Inc., Houston, manufacturers of the Conestoga launch vehicle. #### **STD** Standard 34-m DSS, retired from DSN service. ## **STS** Space Transportation System (Space Shuttle). # **Subcarrier** Modulation applied to a carrier which is itself modulated with information-carrying variations. # Sun synchronous orbit A spacecraft orbit that precesses, wherein the location of periapsis changes with respect to the planet's surface so as to keep the periapsis location near the same local time on the planet each orbit. See walking orbit. # **Superior planet** Planet which orbits farther from the sun than Earth's orbit. # **Superior conjunction** Alignment between Earth and a planet on the far side of the sun. # **SWG** Science Working Group. #### QUICK-INDEX AT TOP OF PAGE #### TAU Thousand AU Mission. ## **TCM** Trajectory Correction Maneuver, spacecraft propulsive maneuver. ## **TDM** Time-division multiplexing. #### **Termination shock** Shock at which the solar wind is thought to slow to subsonic speed, well inside the heleopause. T Tera, a multiplier $x10^{12}$, from the Greek teras (monster). See the entry for CGPM. # **Terrestrial planet** One of the four inner Earth-like planets. # Three-way Coherent communications mode wherein a DSS receives a downlink whose frequency is based upon the frequency of an uplink provided by another DSS. # **TMOD** PL's Telecommunications and Mission Operations Directorate. # **THz** Terahertz (10¹² Hz). # **TLM** DSN Telemetry System. Also, telemetry data. # **TOS** Transfer Orbit Stage, upper stage. # **Transducer** Device for changing one kind of energy into another, typically from heat, position, or pressure into a varying electrical voltage or vice-versa, such as a microphone or speaker. # **Transponder** Electronic device which combines a transmitter and a receiver. # **TRC** NASA's Teacher Resource Centers. Obsolete, now called Educator Resource Centers, ERC. ## **TRK** DSN Tracking System. Also, Tracking data. # **TRM** Transmission Time, UTC Earth time of uplink. # True anomaly The angular distance of a point in an orbit past the point of periapsis, measured in degrees. # **TWNC** Two-Way Non-Coherent mode, in which a spacecraft's downlink is not based upon a received uplink from DSN. # Two-way Communications mode consisting of downlink received from a spacecraft while uplink is being received at the spacecraft. See also coherent. #### **TWT** Traveling Wave Tube, downlink power amplifier in a spacecraft telecommunications subsystem, the final stage of amplification for downlink (same unit as TWTA). # **TWTA** Traveling Wave Tube Amplifier, downlink power amplifier in a spacecraft telecommunications subsystem, the final stage of amplification for downlink (same unit as TWT). # **TXR** DSN's DSCC Transmitter assembly. # QUICK-INDEX AT TOP OF PAGE ## **UHF** Ultra-high frequency (around 300MHz). ## μm Micrometer (10^{-6} m) . # **ULS** Ulysses spacecraft. # **Uplink** Signal sent to a spacecraft. # **Uranus** Seventh planet from the sun, a gas giant or Jovian planet. # **USO** Ultra Stable Oscillator, in a spacecraft telecommunications subsystem. # UT Universal Time, also called Zulu (Z) time, previously Greenwich Mean Time. UT is based on the imaginary "mean sun," which averages out the effects on the length of the solar day caused by Earth's slightly non-circular orbit about the sun. UT is not updated with leap seconds as is UTC. # **UTC** Coordinated Universal Time, the world-wide scientific standard of timekeeping. UTC is based upon carefully maintained atomic clocks and is kept accurate to within microseconds worldwide. The addition or subtraction of leap seconds, as necessary, at two opportunities every year adjusts UTC for irregularities in Earth's rotation. # UV Ultraviolet (meaning "above violet") radiation. Electromagnetic radiation in the neighborhood of 100 nanometers wavelength. ## QUICK-INDEX AT TOP OF PAGE ## Venus Second planet from the sun, a terrestrial planet. # VGR1 Voyager 1 spacecraft. # VGR2 Voyager 2 spacecraft. # **VLBI** DSN Very Long Baseline Interferometry System. Also, VLBI data. # QUICK-INDEX AT TOP OF PAGE \mathbf{W} Watt, a measure of electrical power equal to potential in volts times current in amps. W West. # Walking orbit A spacecraft orbit that precesses, wherein the location of periapsis changes with respect to the planet's surface in a useful way. See sun-synchronous. # Wavelength The distance that a wave from a single oscillation of electromagnetic radiation will propagate during the time required for one oscillation. # **WWW** World-Wide Web. # QUICK-INDEX AT TOP OF PAGE # X-band A range of microwave radio frequencies in the neighborhood of 8 to 12 GHz. # X-ray Electromagnetic radiation in the neighborhood of 100 picometer wavelength. Y Yotta, a multiplier, $x10^{24}$ from the second-to-last letter of the Latin alphabet. See the entry for CGPM. \mathbf{Z} Zetta, a multiplier, $x10^{21}$ from the last letter of the Latin alphabet. See the entry for CGPM. \mathbf{Z} Zulu in phonetic alphabet, stands for UT, Universal Time. # **Z**enith The point on the celestial sphere directly above the observer. Opposite the nadir. # QUICK-INDEX AT TOP OF PAGE | HOME GUIDE IND | DEX GLOSSARY UNITS | S OF MEASURE LINKS | |---|---|---| | SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits 6 Electromagnetics | SECTION II FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments | SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise 16 Encounter 17 Extended Operations 18 Deep Space Network | | | 13 Navigation | | # **Units of Measure** If you don't find it here, look in the GLOSSARY. In the Basics of Space Flight, most abbreviations for units of measure are not spelled out the first time they are used, the way other abbreviations are. They are all listed on this page instead. The <u>first</u> list contains abbreviations you'll find most frequently in the Basics of Space Flight. Below it you'll find some of the International System of Units, <u>SI</u>, and a link to the The National Institute of Standards for complete details. Next is a set of formulas for <u>converting</u> SI to English measures. # 1. Unit Abbreviations Frequently Found in the Text - **AU** Astronomical Unit, a measure of distance, the mean sun-Earth distance, 149,597,870 km - **bps** Bits per second, a measure of data rate - c Speed of light in a vacuum, 299,792,458 m/sec - Giga, a multiplier,* $x10^9$ from the Latin "gigas" (giant). In the U.S., 10^9 is a billion, while in other countries using SI, 10^{12} is a billion. Giga means 10^9 everywhere. - **g** Gram, a unit of mass (see SI units bleow) - **Hz** Hertz, the number of cycles per second - **k** Kilo, a multiplier,* x10³ from the Greek "khilioi" (thousand) - LY Light Year, a measure of distance, the distance light travels in one year; 206,264.806 AU - M Mega, a multiplier,* x10⁶ from the Greek "megas" (great) - **m** Meter, a unit of length (USA spelling; elsewhere, metre) (see SI units below) - N Newton, a unit of force (see SI units with special names, bleow) - W Watt, a unit of power (see SI units with special names, bleow) *The remaining multipliers are listed in the GLOSSARY. # 2. International System of Units, SI SI has long been the language
universally used in science and technology. It has also become the dominant language of international commerce and trade, except in the U.S. | | SI base unit | | |---------------------------|--------------|--------| | Base quantity | Name | Symbol | | length | meter | m | | mass | kilogram | kg | | time | second | S | | electric current | ampere | A | | thermodynamic temperature | kelvin | K | | amount of substance | mole | mol | | luminous intensity | candela | cd | For a comprehensive and definitive reference on all aspects of SI, as well as many other quantities and standards, please visit the <u>National Institute of Standards</u> (NIST) website. Some of the information on this page has been obtained from there. # **Some Derived SI Quantities** Selected from NIST website # SI derived unit | Derived quantity | Name | Symbol | |-------------------------|--|--------------------| | area | square meter | m^2 | | volume | cubic meter | m^3 | | speed, velocity | meter per second | m/s | | acceleration | meter per second squared (meter per second per second) | m/s ² | | wave number | reciprocal meter | m ⁻¹ | | mass density | kilogram per cubic meter | kg/m ³ | | specific volume | cubic meter per kilogram | m ³ /kg | | current density | ampere per square meter | A/m^2 | | magnetic field strength | ampere per meter | A/m | # SI Units with Special Names Selected from NIST website | OT | | • | | | • 4 | |-----------|----|-----|-----|-----|-----| | SI | qe | riv | ved | III | nit | | Derived quantity | Name | Symbol | Expression
in terms of
other SI units | Expression in terms of SI base units | |--|----------------|----------|---|---| | plane angle | radian | rad | - | $\mathbf{m} \cdot \mathbf{m}^{-1} = 1$ | | solid angle | steradian | sr | - | $m^2 \cdot m^{-2} = 1$ | | frequency | hertz | Hz | - | s-1 | | force | newton | N | - | m·kg·s ⁻² | | pressure, stress | pascal | Pa | N/m^2 | $m^{-1}\cdot kg\cdot s^{-2}$ | | energy, work, quantity of heat | joule | J | N·m | $m^2 \cdot kg \cdot s^{-2}$ | | power, radiant flux | watt | W | J/s | $m^2 \cdot kg \cdot s^{-3}$ | | electric charge, quantity of electricity | coulomb | С | - | s·A | | electric potential
difference,
electromotive force | volt | V | W/A | $m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$ | | capacitance | farad | F | C/V | $m^{-2}\cdot kg^{-1}\cdot s^4\cdot A^2$ | | electric resistance | ohm | Ω | V/A | $m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$ | | electric conductance | siemens | S | A/V | $m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2$ | | magnetic flux | weber | Wb | $V \cdot s$ | $m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$ | | magnetic flux density | tesla | T | Wb/m^2 | kg·s-2·A-1 | | inductance | henry | Н | Wb/A | $m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$ | | Celsius temperature | degree Celsius | °C | - | K | | luminous flux | lumen | lm | cd·sr | $m^2 \cdot m^{-2} \cdot cd = cd$ | | illuminance | lux | lx | lm/m^2 | $m^2 \cdot m^{-4} \cdot cd = m^{-2} \cdot cd$ | # 3. A Few Handy SI-to-English Conversions Take the number of SI units and apply the conversion to get the number of English units. For example, 2 meters = 6.6 feet. Millimeters to inches: $mm \times 0.04 = in$ Centimeters to inches: $cm \times 0.4 = in$ Meters to feet: $m \times 3.3 = ft$ Meters to yards: $m \times 1.1 = yds$ Kilometers to miles: $km \times 0.6 = mi$ Grams to ounces: $g \times 0.035 = oz$ Kilograms to pounds: $kg \times 2.2 = lbs$ Celsius to Fahrenheit: $^{\circ}$ C x 9/5 + 32 = $^{\circ}$ F Newtons to Pounds Force: $N \times 1/4.448 = 1bf$ | TIONE I GUIDE I INDEA I GEOSSANT I UNITS OF MEASURE I EIN | HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS | |---|------|-------|-------|----------|------------------|-------| |---|------|-------|-------|----------|------------------|-------| SECTION I **ENVIRONMENT** 1 The Solar System **2** Reference Systems 3 Gravity & Mechanics **4** Trajectories **5** Planetary Orbits **6** Electromagnetics **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification **10** Telecommunications 11 Onboard Systems **12** Science Instruments 13 Navigation SECTION III FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network If you like Basics of Space Flight, you will also like NASA/JPL's <u>Basics of Radio</u> Astronomy, which is another down-to-Earth workbook on an out-of-this-world subject. Here's a list of links related to interplanetary space flight. Some appear elsewhere in Basics of Space Flight, and some do not. # **NASA** - NASA The U.S. National Aeronautics and Space Administration - Caltech's Jet Propulsion Laboratory # **JPL's Missions** - Past - Present - Planned - <u>Proposed</u> # Institutions of Interest - The Space Telescope Science Institute - The Keck Observatory - Caltech - NIST # The Solar System - The Solar System Simulator from JPL - Views of the Solar System - The Nine Planets, which includes . . . - o The Sun - The Planet Mercury - o The Planet Venus - o The Planet Earth - o The Planet Mars - The Planet Jupiter - The Planet Saturn - The Planet Uranus - o The Planet Neptune - o The Planet Pluto - o Uranus's moon Miranda - o The Asteroid 951 Gaspra # **Tutorials** • Tour of the universe's evolution # **Miscellaneous** - Basic Astronomical Terms from SEDS - Physical Constants and Astronomical Data from Caltech - Mission and Spacecraft Library - The U.S. National Air and Space Museum - <u>Small Satellite Home Page</u>, maintained by the Center for Satellite Engineering Research. - The Lewis Center for Educational Research - University of Bradford (England) - <u>AstroWeb: Astronomical Internet Resources</u> from Space Telescope Science Institute - SpaceLink from NASA - Brian Robert's Space Hotlist HOME | GUIDE | INDEX | GLOSSARY | UNITS OF MEASURE | LINKS SECTION I ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories <u>**5** Planetary Orbits</u> **6** Electromagnetics **SECTION II** FLIGHT PROJECTS 7 Mission Inception **8** Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments 13 Navigation **SECTION III** FLIGHT OPERATIONS 14 Launch 15 Cruise **16** Encounter **17** Extended Operations 18 Deep Space Network # Correct Answers to Basics of Space Flight Quizzes Chapter: $\underline{1} | \underline{2} | \underline{3} | \underline{4} | \underline{5} | \underline{6} | \underline{7} | \underline{8} | \underline{9} | \underline{10} | \underline{11} | \underline{12} | \underline{13} | \underline{14} | \underline{15} | \underline{16} | \underline{17} | \underline{18}$ # Quiz 1: 1.01 The sun and all its neighboring stars orbit the center of: A spiral galaxy. 1.02 True or false? All the sun's planets revolve around it in the same direction. True 1.03 Which of the following describe the Astronomical unit (AU)? Sun-earth mean distance. About 1.5x [10 to the 8th power] Km. 1.04 The sun is... A yellow-white dwarf star. 1.05 Even though the planets make up a small fraction of the solar system's mass, they do retain the vast majority of the solar system's... Angular momentum. 1.06 The solar wind and solar magnetic field stop at the... Heliopause. ## Quiz 2: 1.07 Which of the following are jovian planets? Jupiter Saturn Uranus Neptune 1.08 The environment of which of the following planets present(s) a serious trapped radiation hazard? Earth Jupiter 1.09 True or false? Jupiter's moon Europa has a thick hazy atmosphere. False 1.10 Roughly how many light minutes (average) is Saturn from the sun? 80 1.11 A superior planet is... farther than Earth from the sun. 1.12 When the Moon is full, it is also... *at opposition*. #### Ouiz 3: 1.13 Most asteroids orbit between which two bodies? Mars Jupiter 1.14 Are there asteroids that might impact the Earth in the future? Yes 1.15 Comet nuclei are made largely of... water ice 1.16 What is an object from interplanetary space called after it strikes the Earth? *meteorite* #### Quiz 4: 2.01 Latitude is expressed in degrees and parts of degrees... North South 2.02 The use of epoch references is required mostly because of... Earth's axial precession 2.03 Coordinates, epochs, and motions are interpreted to make sense of observations and measurements of natural objects and spacecraft. True #### Ouiz 5: 2.04 The point directly overhead an observer is the... Zenith. 2.05 Declination and right ascension are analogous to... latitude and longitude. 2.06 Modern radio telescopes, DSN stations, and large optical telescopes are all designed to use HA-DEC systems because of their simplicity. False #### Ouiz 6: 2.07 The world-wide scientific time standard is... UTC 2.08 At around noon local time, the sun is about overhead as viewed by an observer at... Greenwich England JPL Venus Mars Timbuktu 2.09 ERT is the UTC of an event as received at a DSN station. True #### **Quiz 7:** 3.01 Every mass in the universe attracts every other mass in the universe, no matter how distant. True 3.02 Half the maximum diameter of an ellipse, the distance from the center to one end, is called the... Semi-major axis 3.03 A circle is an ellipse with... Zero eccentricity #### Quiz 8: 3.04 To move in a circular path, a planet must experience a constant acceleration toward the star it orbits. This is its... centripetal acceleration caused by gravity. 3.05 An object orbiting the sun is moving fastest while it is nearest the sun. True 3.06 A planet and its star are most accurately described as... the planet and the star orbiting a barycenter. 3.07 The decreased strength of gravity proportional to the square of distance is responsible for... gravity gradients. #
Quiz 9: 3.08 Check the true statement(s): Adding energy at periapsis will increase apoapsis altitude. Adding energy at apoapsis will increase periapsis altitude. Removing energy at periapsis will decrease apoapsis altitude. Removing energy at apoapsis will decrease periapsis altitude. 3.09 Check the true statement(s): Adding energy at perijove will increase apojove altitude. Adding energy at apogee will increase perigee altitude. Removing energy at periselene will decrease apselene altitude. Removing energy at apochron will decrease perichron altitude. 3.10 Dipping into a planet's atmosphere to remove energy near periapsis, in order to change apoapsis altitude, is called what? aerobraking. # **Quiz 10:** 4.01 To send a spacecraft from Earth to the orbit of Venus... Remove energy from its existing solar orbit. 4.02 A Hohmann transfer orbit... permits efficient use of propellant. 4.03 During a gravity assist boost, the spacecraft... tugs on the planet via gravity. changes the planet's orbital energy. #### **Quiz 11:** 5.01 The ascending node is where... an orbiting body crosses the ecliptic plane going north. 5.02 A geostationary orbit is... geosychronous. prograde. 5.03 A sun-synchronous orbit is... always a walking orbit. convenient for many science observations. ## **Ouiz 12:** 6.01 An electromagnetic wave is propagated when a magnetic field is... created. deactivated. reversed. 6.02 Which of the following are forms of electromagnetic radiation? radio. light. gamma rays. 6.03 The higher the frequency of an electromagnetic wave... the shorter its wavelength. 6.04 The strength of electromagnetic radiation decreases as the... square of distance. 6.05 True or false? It is valid to describe electromagnetic radiation in terms of either particles or waves. True #### **Quiz 13:** 6.06 RFI, or Radio Frequency Interference, is responsible for... reduction of SNR. increase in noise level. 6.07 The X-band is radiation of... microwave radio. 6.08 Gas surrounding a star may absorb energy, causing... absorption lines. 6.09 Spectrographic instruments on a spacecraft can obtain data regarding an observed body's... composition. temperature. ## **Quiz 14:** 6.10 Doppler effect can be noticed only... when distance between source and receiver is changing. 6.11 RF energy reflects off various surfaces... much the same as light does. at the same angle as it comes in. 6.12 The design of DSN antennas using a folded RF path is known as... Cassegrain. 6.13 Refraction makes a star that's low in the sky appear... higher. 6.14 When two incoming radio waves arrive at one antenna... they may or may not be in phase with each other. #### **Quiz 15:** 7.01 Teams of scientists who contribute and operate instruments for a space science mission may typically be chosen from... within NASA. academia. scientific institutions worldwide. JPL. 7.02 Historically, a JPL project gets its official start when funding is made available to JPL's Mission Design Section. True. 7.03 Contention for DSN resources may occur if a new spacecraft will appear with others in the same... part of Earth's sky. 7.04 Data return from a planned spacecraft drives... ground system hardware and software design. data processing facility requirements. #### **Ouiz 16:** 8.01 Flight science experiments such as imaging and spectroscopy rely upon instruments aboard the spacecraft. frequently designed and operated by a PI or science team. 8.02 Scientific data produced by an experiment aboard a spacecraft is generally much less important than engineering data about the spacecraft's state of health. False. 8.03 What is the name of the discipline that uses a spacecraft's radio transceiver and the DSN together as an instrument for many kinds of experiments? radio science. 8.04 Which of the following are scientific journals in which results of many JPL spacecraft experiments are first formally published? *Icarus* Nature Science **JGR** # **Quiz 17:** - 9.01 What is the appropriate classification for the Voyager 1 spacecraft? *Flyby*. - 9.02 What is the appropriate classification for the Cassini spacecraft? *Orbiter*. - 9.03 What is the appropriate classification for the Huygens spacecraft? *Atmospheric*. - 9.04 What is the appropriate classification for the Sojourner spacecraft? *Rover*. - 9.05 What is the appropriate classification for the Deep Impact spacecraft? *Penetrator*. - 9.06 What is the appropriate classification for the SIM spacecraft? *Observatory*. - 9.07 What is the appropriate classification for the Surveyor spacecraft? *Lander*. ## **Quiz 18:** 10.01 If a spacecraft is two-way, it means... it is receiving an uplink. you are receiving a downlink. 10.02 If a spacecraft is three-way, it means... it is receiving an uplink. a second station is receiving a downlink. 10.03 What is/are the primary benefit/s of a coherent downlink? precision Doppler. clean radio science. 10.04 If TWNC is on, a spacecraft's downlink cannot be... *coherent.* 10.05 A spacecraft can modulate telemetry symbols onto its... downlink carrier. downlink subcarrier. #### **Ouiz 19:** 11.01 Which of the following would be associated with a Structure Subsystem? Bus Component support 11.02 Which of the following would be associated with a Data Handling Subsystem? Spacecraft safing TLM Packets Spacecraft commanding 11.03 Which of the following would be associated with an Attitude & Articulation Control Subsystem? Star scanner Sun sensor Reaction wheels Inertial reference unit 11.04 Which of the following would be associated with a Telecommunications Subsystem? TWTA **HGA** *LGA* Transponder 11.05 Which of the following is a function of reaction wheels? To rotate the spacecraft as directed by the AACS computer. To transfer angular momentum to and from the spacecraft. 11.06 Which of the following is a function of gyros? *To provide inertial reference to the AACS computer.* #### **Quiz 20:** 11.07 Which of the following are practical primary sources of electrical power for an interplanetary spacecraft? photovoltaics solar panels RTGs 11.08 A solar panel produces electricity... using photovoltaics only when in sunlight 11.09 A radioisotope thermo-electric generator produces electrical power... with no moving parts from the heat of radioactive decay using thermocouples 11.10 What is the general purpose of a Mechanical Devices subsystem? provide for activities such as deployments. 11.11 Helium is used in propulsion subsystems... to pressurize fuel tanks. to pressurize oxidizer tanks. 11.12 Multilayer insulation serves to... passively maintain spacecraft temperature. protect against micro-meteoroid impacts. ## **Quiz 21:** 12.01 Which of the following is/are by definition true of a direct-sensing science instrument? It measures a phenomenon in the spacecraft's vicinity It comes in direct contact with the object of its measurements 12.02 What qualifies an instrument as an active sensor? It probes the subject using the instrument's own energy 12.03 Which of these is/are passive remote-sensing instrument/s? Camera Spectrograph Spectroscope 12.04 Which of the following is/are active direct-sensing instrument/s? Sojourner APXS 12.05 Which of the following is/are active remote-sensing instrument/s? Magellan Radar 12.06 Which of the following are passive direct-sensing instrument/s? Galileo EPD Voyager MAG ## **Quiz 22:** 13.01 Which of the following DSN data types are important to navigation, for some or all spacecraft? frequency & timing telemetry track VLBI 13.02 Doppler data provides what information? *line-of-site velocity* 13.03 What can ranging data provide? distance 13.04 Doppler is most accurate when the downlink is... cohereni 13.05 In addition to spacecraft navigation, VLBI provides precise data on... station locations #### **Quiz 23:** 14.01 Compared to launch from high latitude, launch from near the equator can take advantage of... Earth's rotational speed for low inclination orbits 14.02 Launches from the U.S. east coast are suitable for launches only to... Low-inclination trajectories 14.03 Interplanetary launches need to take best advantage of Earth's... Orbital motion 14.04 Solid propellant rockets cannot be operationally... Shut down #### **Ouiz 24:** 15.01 Which of the following are to be reasonably expected during Cruise phase? Deployment of appendages Unplanned safing Realtime commanding 15.02 Nominal events during a DSN pass include... BOT AOS LOS EOT 15.03 Science instrument calibrations are... Essential to the scientific method # **Quiz 25:** 16.01 True or false? A flyby mission's encounter phase typically lasts longer than an orbiter mission's encounter phase. *False* 16.02 True or false? It is common for a spacecraft's orbit-insertion burn to be unobservable from Earth. True 16.03 Which of the following are normally performed as part of a planetary system exploration mission? atmosphere observations ring occultation experiments magnetosphere measurement satellite observations 16.04 Aerobraking converts the spacecraft's velocity largely into... heat 16.05 True or false? Gathering data for gravity field mapping requires only receiving and processing a coherent downlink. True # **Quiz 26:** 17.01 True or false? Probably the best measure of a mission's success is whether it has returned enough data to fulfill its primary objectives. True 17.02 An orbiting Mars data relay capability... exists today. uses UHF radio. is intended to serve landers and other craft. 17.03 Which of the following is probably the most highly-contended resource to be freed at the end of a mission? DSN tracking #### **Quiz 27:** 18.01 Where is DSS14? What subnet does it belong to? **GDSCC** 70-m 18.02 Where is DSS25? What subnet does it belong to? **GDSCC** BWG 18.03 Where is DSS34? What subnet does it belong to? CDSCC BWG 18.04 Where is DSS65? What subnet does it belong to? **MDSCC** HEF 18.05 Which of the following DSN systems reports on the internal performance of most DSN components? MON 18.06 Which of the following DSN systems is
capable of measuring continental drift? VLBI 18.07 Where are components of the DSCC microwave subsystem located? DSS 18.08 What would be the consequence(s) of a red BVR? No TLM data No TRK data | SECTION I
ENVIRONMENTSECTION II
FLIGHT PROJECTSSECTION III
FLIGHT OPERATIONS1 The Solar System7 Mission Inception14 Launch2 Reference Systems8 Experiments15 Cruise3 Gravity & Mechanics9 S/C Classification16 Encounter4 Trainestories10 Talgorymynications17 Extended Operation | HOME GUIDE INE | DEX GLOSSARY UNIT | S OF MEASURE LINKS | |--|---|--|---| | _ | ENVIRONMENT 1 The Solar System 2 Reference Systems 3 Gravity & Mechanics 4 Trajectories 5 Planetary Orbits | FLIGHT PROJECTS 7 Mission Inception 8 Experiments 9 S/C Classification 10 Telecommunications 11 Onboard Systems 12 Science Instruments | FLIGHT OPERATIONS 14 Launch 15 Cruise |